175 lines
5.8 KiB
Swift
175 lines
5.8 KiB
Swift
// Copyright © 2024 Apple Inc.
|
|
|
|
import AsyncAlgorithms
|
|
import Foundation
|
|
import MLX
|
|
import MLXRandom
|
|
|
|
private func topPSampling(logits: MLXArray, topP: Float, temp: Float) -> MLXArray {
|
|
var logits = logits
|
|
if logits.dtype == .bfloat16 {
|
|
logits = logits.asType(.float32)
|
|
}
|
|
|
|
let probs = softMax(logits / temp, axis: -1)
|
|
let sortedIndices = argSort(probs, axis: -1)
|
|
|
|
// probs shape is [B,V] and after take it will be [1, B, V], so we squeeze it back to [B, V]
|
|
let sortedProbs = take(probs, sortedIndices, axis: -1).squeezed(axis: 0)
|
|
|
|
let cumulativeProbs = cumsum(sortedProbs, axis: -1)
|
|
|
|
let topProbs = MLX.where(cumulativeProbs .> (1 - topP), sortedProbs, zeros(like: sortedProbs))
|
|
|
|
let sortedToken = categorical(log(topProbs))
|
|
return sortedIndices.squeezed(axis: 0)[sortedToken]
|
|
}
|
|
|
|
private func applyRepetitionPenalty(
|
|
logits: MLXArray, repetitionContext: MLXArray, penalty: Float
|
|
) -> MLXArray {
|
|
var logits = logits
|
|
|
|
if repetitionContext.shape[0] > 0 {
|
|
let indices = repetitionContext
|
|
var selectedLogits = take(logits, indices, axis: -1).squeezed(axis: 0)
|
|
|
|
selectedLogits = MLX.where(
|
|
selectedLogits .< 0, selectedLogits * penalty, selectedLogits / penalty)
|
|
|
|
logits[0..., indices] = selectedLogits
|
|
return logits
|
|
}
|
|
|
|
return logits
|
|
}
|
|
|
|
private func sample(logits: MLXArray, temp: Float, topP: Float = 1.0) -> MLXArray {
|
|
if temp == 0 {
|
|
return argMax(logits, axis: -1)
|
|
} else {
|
|
if topP > 0 && topP < 1 {
|
|
return topPSampling(logits: logits, topP: topP, temp: temp)
|
|
}
|
|
return categorical(logits * (1 / temp))
|
|
}
|
|
}
|
|
|
|
/// Synchronous generator of tokens.
|
|
///
|
|
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
|
|
public struct TokenIterator: Sequence, IteratorProtocol {
|
|
let model: LLMModel
|
|
let temp: Float
|
|
let topP: Float
|
|
let repetitionPenalty: Float
|
|
let repetitionContextSize: Int
|
|
var repetitionContext: MLXArray
|
|
var y: MLXArray
|
|
var cache: [(MLXArray, MLXArray)]
|
|
|
|
var first = true
|
|
|
|
public init(
|
|
prompt: MLXArray, model: LLMModel, temp: Float = 0.0, topP: Float = 1.0,
|
|
repetitionPenalty: Float = 1.0, repetitionContextSize: Int = 20
|
|
) {
|
|
self.model = model
|
|
self.temp = temp
|
|
self.topP = topP
|
|
self.y = prompt
|
|
self.cache = []
|
|
self.repetitionPenalty = repetitionPenalty
|
|
self.repetitionContextSize = repetitionContextSize
|
|
if repetitionContextSize > 1 {
|
|
if prompt.shape[0] <= repetitionContextSize {
|
|
self.repetitionContext = prompt
|
|
} else {
|
|
self.repetitionContext = prompt[-repetitionContextSize ... -1]
|
|
}
|
|
} else {
|
|
self.repetitionContext = []
|
|
}
|
|
}
|
|
|
|
mutating public func next() -> MLXArray? {
|
|
var logits: MLXArray
|
|
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
|
logits = logits[0..., -1, 0...]
|
|
if repetitionPenalty > 1.0 {
|
|
// apply repetition penalty
|
|
logits = applyRepetitionPenalty(
|
|
logits: logits, repetitionContext: repetitionContext, penalty: repetitionPenalty)
|
|
}
|
|
y = sample(logits: logits, temp: temp, topP: topP)
|
|
// append the current token to the context and check repetitionPenalty context see if need to remove the first token
|
|
if repetitionContextSize > 1 {
|
|
repetitionContext = concatenated([repetitionContext, y], axis: 0)
|
|
if repetitionContext.shape[0] > repetitionContextSize {
|
|
repetitionContext = repetitionContext[1...]
|
|
}
|
|
}
|
|
|
|
return y
|
|
}
|
|
}
|
|
|
|
/// Async generator of tokens.
|
|
///
|
|
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
|
|
///
|
|
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
|
|
/// to the caller.
|
|
public func generate(
|
|
prompt: MLXArray, model: LLMModel, temp: Float = 0.0, topP: Float = 1.0,
|
|
repetitionPenalty: Float = 1.0, repetitionContextSize: Int = 20
|
|
) -> (
|
|
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
|
|
) {
|
|
let channel = AsyncChannel<Int>()
|
|
let buffer = channel.buffer(policy: .bounded(10))
|
|
|
|
let task = Task {
|
|
var y = prompt
|
|
var cache = [(MLXArray, MLXArray)]()
|
|
var repetitionContext: MLXArray
|
|
|
|
if repetitionContextSize > 1 {
|
|
if prompt.shape[0] <= repetitionContextSize {
|
|
repetitionContext = prompt
|
|
} else {
|
|
repetitionContext = prompt[-repetitionContextSize ... -1]
|
|
}
|
|
} else {
|
|
repetitionContext = []
|
|
}
|
|
while !Task.isCancelled {
|
|
var logits: MLXArray
|
|
(logits, cache) = model(
|
|
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
|
|
|
|
logits = logits[0..., -1, 0...]
|
|
if repetitionPenalty > 1.0 {
|
|
// apply repetition penalty
|
|
logits = applyRepetitionPenalty(
|
|
logits: logits, repetitionContext: repetitionContext, penalty: repetitionPenalty
|
|
)
|
|
}
|
|
y = sample(logits: logits, temp: temp, topP: topP)
|
|
// append the current token to the context and check repetitionPenalty context see if need to remove the first token
|
|
if repetitionContextSize > 1 {
|
|
repetitionContext = concatenated([repetitionContext, y], axis: 0)
|
|
if repetitionContext.shape[0] > repetitionContextSize {
|
|
repetitionContext = repetitionContext[1...]
|
|
}
|
|
}
|
|
|
|
eval(y)
|
|
|
|
await channel.send(y.item(Int.self))
|
|
}
|
|
}
|
|
|
|
return (task, buffer)
|
|
}
|