Files
mlx-swift-examples/Libraries/LLM/Evaluate.swift
2024-04-04 15:15:50 -07:00

175 lines
5.8 KiB
Swift

// Copyright © 2024 Apple Inc.
import AsyncAlgorithms
import Foundation
import MLX
import MLXRandom
private func topPSampling(logits: MLXArray, topP: Float, temp: Float) -> MLXArray {
var logits = logits
if logits.dtype == .bfloat16 {
logits = logits.asType(.float32)
}
let probs = softMax(logits / temp, axis: -1)
let sortedIndices = argSort(probs, axis: -1)
// probs shape is [B,V] and after take it will be [1, B, V], so we squeeze it back to [B, V]
let sortedProbs = take(probs, sortedIndices, axis: -1).squeezed(axis: 0)
let cumulativeProbs = cumsum(sortedProbs, axis: -1)
let topProbs = MLX.where(cumulativeProbs .> (1 - topP), sortedProbs, zeros(like: sortedProbs))
let sortedToken = categorical(log(topProbs))
return sortedIndices.squeezed(axis: 0)[sortedToken]
}
private func applyRepetitionPenalty(
logits: MLXArray, repetitionContext: MLXArray, penalty: Float
) -> MLXArray {
var logits = logits
if repetitionContext.shape[0] > 0 {
let indices = repetitionContext
var selectedLogits = take(logits, indices, axis: -1).squeezed(axis: 0)
selectedLogits = MLX.where(
selectedLogits .< 0, selectedLogits * penalty, selectedLogits / penalty)
logits[0..., indices] = selectedLogits
return logits
}
return logits
}
private func sample(logits: MLXArray, temp: Float, topP: Float = 1.0) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)
} else {
if topP > 0 && topP < 1 {
return topPSampling(logits: logits, topP: topP, temp: temp)
}
return categorical(logits * (1 / temp))
}
}
/// Synchronous generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
public struct TokenIterator: Sequence, IteratorProtocol {
let model: LLMModel
let temp: Float
let topP: Float
let repetitionPenalty: Float
let repetitionContextSize: Int
var repetitionContext: MLXArray
var y: MLXArray
var cache: [(MLXArray, MLXArray)]
var first = true
public init(
prompt: MLXArray, model: LLMModel, temp: Float = 0.0, topP: Float = 1.0,
repetitionPenalty: Float = 1.0, repetitionContextSize: Int = 20
) {
self.model = model
self.temp = temp
self.topP = topP
self.y = prompt
self.cache = []
self.repetitionPenalty = repetitionPenalty
self.repetitionContextSize = repetitionContextSize
if repetitionContextSize > 1 {
if prompt.shape[0] <= repetitionContextSize {
self.repetitionContext = prompt
} else {
self.repetitionContext = prompt[-repetitionContextSize ... -1]
}
} else {
self.repetitionContext = []
}
}
mutating public func next() -> MLXArray? {
var logits: MLXArray
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
logits = logits[0..., -1, 0...]
if repetitionPenalty > 1.0 {
// apply repetition penalty
logits = applyRepetitionPenalty(
logits: logits, repetitionContext: repetitionContext, penalty: repetitionPenalty)
}
y = sample(logits: logits, temp: temp, topP: topP)
// append the current token to the context and check repetitionPenalty context see if need to remove the first token
if repetitionContextSize > 1 {
repetitionContext = concatenated([repetitionContext, y], axis: 0)
if repetitionContext.shape[0] > repetitionContextSize {
repetitionContext = repetitionContext[1...]
}
}
return y
}
}
/// Async generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
///
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
/// to the caller.
public func generate(
prompt: MLXArray, model: LLMModel, temp: Float = 0.0, topP: Float = 1.0,
repetitionPenalty: Float = 1.0, repetitionContextSize: Int = 20
) -> (
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
) {
let channel = AsyncChannel<Int>()
let buffer = channel.buffer(policy: .bounded(10))
let task = Task {
var y = prompt
var cache = [(MLXArray, MLXArray)]()
var repetitionContext: MLXArray
if repetitionContextSize > 1 {
if prompt.shape[0] <= repetitionContextSize {
repetitionContext = prompt
} else {
repetitionContext = prompt[-repetitionContextSize ... -1]
}
} else {
repetitionContext = []
}
while !Task.isCancelled {
var logits: MLXArray
(logits, cache) = model(
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
logits = logits[0..., -1, 0...]
if repetitionPenalty > 1.0 {
// apply repetition penalty
logits = applyRepetitionPenalty(
logits: logits, repetitionContext: repetitionContext, penalty: repetitionPenalty
)
}
y = sample(logits: logits, temp: temp, topP: topP)
// append the current token to the context and check repetitionPenalty context see if need to remove the first token
if repetitionContextSize > 1 {
repetitionContext = concatenated([repetitionContext, y], axis: 0)
if repetitionContext.shape[0] > repetitionContextSize {
repetitionContext = repetitionContext[1...]
}
}
eval(y)
await channel.send(y.item(Int.self))
}
}
return (task, buffer)
}