initial commit

This commit is contained in:
David Koski
2024-02-22 10:41:02 -08:00
commit b6d1e14465
29 changed files with 3856 additions and 0 deletions

63
.circleci/config.yml Normal file
View File

@@ -0,0 +1,63 @@
version: 2.1
orbs:
apple: ml-explore/pr-approval@0.1.0
parameters:
nightly_build:
type: boolean
default: false
weekly_build:
type: boolean
default: false
jobs:
mac_build_and_test:
macos:
xcode: 15.2.0
resource_class: macos.m1.medium.gen1
steps:
- checkout
- run: git submodule sync
- run: git submodule update --init
- run:
name: Run style checks
command: |
pip install pre-commit
brew install swift-format
pre-commit run --all
if ! git diff --quiet; then echo 'Style checks failed, please install pre-commit and run pre-commit run --all and push the change'; exit 1; fi
- run:
name: Build Examples
command: |
xcodebuild -version
xcrun --show-sdk-build-version
swift --version
xcodebuild -scheme llm-tool
xcodebuild -scheme mnist-tool
workflows:
build_and_test:
when:
and:
- matches:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
jobs:
- mac_build_and_test
prb:
when:
matches:
pattern: "^pull/\\d+(/head)?$"
value: << pipeline.git.branch >>
jobs:
- hold:
type: approval
- apple/authenticate:
context: pr-approval
- mac_build_and_test:
requires: [ hold ]

90
.gitignore vendored Normal file
View File

@@ -0,0 +1,90 @@
# Xcode
#
# gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
## User settings
xcuserdata/
## compatibility with Xcode 8 and earlier (ignoring not required starting Xcode 9)
*.xcscmblueprint
*.xccheckout
## compatibility with Xcode 3 and earlier (ignoring not required starting Xcode 4)
build/
DerivedData/
*.moved-aside
*.pbxuser
!default.pbxuser
*.mode1v3
!default.mode1v3
*.mode2v3
!default.mode2v3
*.perspectivev3
!default.perspectivev3
## Obj-C/Swift specific
*.hmap
## App packaging
*.ipa
*.dSYM.zip
*.dSYM
## Playgrounds
timeline.xctimeline
playground.xcworkspace
# Swift Package Manager
#
# Add this line if you want to avoid checking in source code from Swift Package Manager dependencies.
# Packages/
# Package.pins
# Package.resolved
# *.xcodeproj
#
# Xcode automatically generates this directory with a .xcworkspacedata file and xcuserdata
# hence it is not needed unless you have added a package configuration file to your project
# .swiftpm
.build/
# CocoaPods
#
# We recommend against adding the Pods directory to your .gitignore. However
# you should judge for yourself, the pros and cons are mentioned at:
# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-control
#
# Pods/
#
# Add this line if you want to avoid checking in source code from the Xcode workspace
# *.xcworkspace
# Carthage
#
# Add this line if you want to avoid checking in source code from Carthage dependencies.
# Carthage/Checkouts
Carthage/Build/
# Accio dependency management
Dependencies/
.accio/
# fastlane
#
# It is recommended to not store the screenshots in the git repo.
# Instead, use fastlane to re-generate the screenshots whenever they are needed.
# For more information about the recommended setup visit:
# https://docs.fastlane.tools/best-practices/source-control/#source-control
fastlane/report.xml
fastlane/Preview.html
fastlane/screenshots/**/*.png
fastlane/test_output
# Code Injection
#
# After new code Injection tools there's a generated folder /iOSInjectionProject
# https://github.com/johnno1962/injectionforxcode
iOSInjectionProject/

6
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,6 @@
repos:
- repo: https://github.com/slessans/pre-commit-swift-format
rev: ""
hooks:
- id: swift-format
args: ["--configuration", ".swift-format"]

7
.swift-format Normal file
View File

@@ -0,0 +1,7 @@
{
"version": 1,
"indentation": {
"spaces": 4
},
"spacesAroundRangeFormationOperators": true,
}

View File

@@ -0,0 +1,77 @@
// Copyright © 2024 Apple Inc.
import Foundation
public enum StringOrNumber: Codable, Equatable {
case string(String)
case float(Float)
public init(from decoder: Decoder) throws {
let values = try decoder.singleValueContainer()
if let v = try? values.decode(Float.self) {
self = .float(v)
} else {
let v = try values.decode(String.self)
self = .string(v)
}
}
public func encode(to encoder: Encoder) throws {
var container = encoder.singleValueContainer()
switch self {
case .string(let v): try container.encode(v)
case .float(let v): try container.encode(v)
}
}
}
public enum ModelType: String, Codable {
case mistral
case llama
case phi
case gemma
func createModel(configuration: URL) throws -> LLMModel {
switch self {
case .mistral, .llama:
let configuration = try JSONDecoder().decode(
LlamaConfiguration.self, from: Data(contentsOf: configuration))
return LlamaModel(configuration)
case .phi:
let configuration = try JSONDecoder().decode(
PhiConfiguration.self, from: Data(contentsOf: configuration))
return PhiModel(configuration)
case .gemma:
let configuration = try JSONDecoder().decode(
GemmaConfiguration.self, from: Data(contentsOf: configuration))
return GemmaModel(configuration)
}
}
}
public struct BaseConfiguration: Codable {
let modelType: ModelType
public struct Quantization: Codable {
public init(groupSize: Int, bits: Int) {
self.groupSize = groupSize
self.bits = bits
}
let groupSize: Int
let bits: Int
enum CodingKeys: String, CodingKey {
case groupSize = "group_size"
case bits = "bits"
}
}
var quantization: Quantization?
enum CodingKeys: String, CodingKey {
case modelType = "model_type"
case quantization
}
}

273
Libraries/LLM/Gemma.swift Normal file
View File

@@ -0,0 +1,273 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXNN
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/gemma.py
// specialized norm for gemma
private class RMSNorm: Module, UnaryLayer {
let weight: MLXArray
let eps: Float
public init(dimensions: Int, eps: Float = 1e-5) {
self.weight = MLXArray.ones([dimensions])
self.eps = eps
super.init()
}
func norm(_ x: MLXArray) -> MLXArray {
let S = 1.0 / sqrt(Float(x.dim(-1)))
let n = (x * S).square().sum(axis: -1, keepDims: true)
return rsqrt(n + eps)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
let output = norm(x.asType(Float.self)).asType(x.dtype)
return (1 + weight) * output
}
}
private class Attention: Module {
let args: GemmaConfiguration
let repeats: Int
let scale: Float
@ModuleInfo(key: "q_proj") var wq: Linear
@ModuleInfo(key: "k_proj") var wk: Linear
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "o_proj") var wo: Linear
let rope: RoPE
public init(_ args: GemmaConfiguration) {
self.args = args
let dim = args.hiddenSize
let heads = args.attentionHeads
let kvHeads = args.kvHeads
self.repeats = heads / kvHeads
let headDim = args.headDimensions
self.scale = pow(Float(headDim), -0.5)
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
self.rope = RoPE(
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
var queries = wq(x)
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
if repeats > 1 {
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
values = MLXArray.repeat(values, count: repeats, axis: 1)
}
if let (keyCache, valueCache) = cache {
queries = rope(queries, offset: keyCache.dim(2))
keys = rope(keys, offset: keyCache.dim(2))
keys = concatenated([keyCache, keys], axis: 2)
values = concatenated([valueCache, values], axis: 2)
} else {
queries = rope(queries)
keys = rope(keys)
}
var scores = (queries * self.scale).matmul(keys.transposed(0, 1, 3, 2))
if let mask {
scores = scores + mask
}
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
return (wo(output), (keys, values))
}
}
private class MLP: Module, UnaryLayer {
@ModuleInfo(key: "gate_proj") var gate: Linear
@ModuleInfo(key: "down_proj") var down: Linear
@ModuleInfo(key: "up_proj") var up: Linear
public init(dimensions: Int, hiddenDimensions: Int) {
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
down(gelu(gate(x)) * up(x))
}
}
private class TransformerBlock: Module {
@ModuleInfo(key: "self_attn") var attention: Attention
let mlp: MLP
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
public init(_ args: GemmaConfiguration) {
self._attention.wrappedValue = Attention(args)
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
self._inputLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
let h = x + r
r = mlp(postAttentionLayerNorm(h))
let out = h + r
return (out, cache)
}
}
public class GemmaModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
fileprivate let layers: [TransformerBlock]
fileprivate let norm: RMSNorm
let hiddenScale: Float
public init(_ args: GemmaConfiguration) {
precondition(args.vocabularySize > 0)
self._embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.hiddenScale = pow(Float(args.hiddenSize), 0.5)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
TransformerBlock(args)
}
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var h = embedTokens(inputs)
h = h * hiddenScale
var mask: MLXArray? = nil
if h.dim(1) > 1 {
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
mask = mask?.asType(h.dtype)
}
var newCache = [(MLXArray, MLXArray)]()
for (i, layer) in layers.enumerated() {
var cacheUpdate: (MLXArray, MLXArray)
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
newCache.append(cacheUpdate)
}
return (norm(h), newCache)
}
}
public class GemmaModel: Module, LLMModel {
let model: GemmaModelInner
public init(_ args: GemmaConfiguration) {
self.model = GemmaModelInner(args)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var (out, cache) = model(inputs, cache: cache)
out = matmul(out, model.embedTokens.weight.T)
return (out, cache)
}
}
public struct GemmaConfiguration: Codable {
var hiddenSize: Int
var hiddenLayers: Int
var intermediateSize: Int
var attentionHeads: Int
var headDimensions: Int
var rmsNormEps: Float
var vocabularySize: Int
var kvHeads: Int
var ropeTheta: Float = 10_000
var ropeTraditional: Bool = false
enum CodingKeys: String, CodingKey {
case hiddenSize = "hidden_size"
case hiddenLayers = "num_hidden_layers"
case intermediateSize = "intermediate_size"
case attentionHeads = "num_attention_heads"
case headDimensions = "head_dim"
case rmsNormEps = "rms_norm_eps"
case vocabularySize = "vocab_size"
case kvHeads = "num_key_value_heads"
case ropeTheta = "rope_theta"
case ropeTraditional = "rope_traditional"
}
public init(from decoder: Decoder) throws {
// custom implementation to handle optional keys with required values
let container: KeyedDecodingContainer<CodingKeys> = try decoder.container(
keyedBy: CodingKeys.self)
self.hiddenSize = try container.decode(
Int.self, forKey: CodingKeys.hiddenSize)
self.hiddenLayers = try container.decode(
Int.self, forKey: CodingKeys.hiddenLayers)
self.intermediateSize = try container.decode(
Int.self, forKey: CodingKeys.intermediateSize)
self.attentionHeads = try container.decode(
Int.self, forKey: CodingKeys.attentionHeads)
self.headDimensions = try container.decode(
Int.self, forKey: CodingKeys.headDimensions)
self.rmsNormEps = try container.decode(
Float.self, forKey: CodingKeys.rmsNormEps)
self.vocabularySize = try container.decode(
Int.self, forKey: CodingKeys.vocabularySize)
self.kvHeads = try container.decode(Int.self, forKey: CodingKeys.kvHeads)
self.ropeTheta =
try container.decodeIfPresent(Float.self, forKey: CodingKeys.ropeTheta)
?? 10_000
self.ropeTraditional =
try container.decodeIfPresent(
Bool.self, forKey: CodingKeys.ropeTraditional) ?? false
}
}

1
Libraries/LLM/LLM.h Normal file
View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,12 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXNN
// Interface for all LLM Models
public protocol LLMModel: Module {
func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
)
}

263
Libraries/LLM/Llama.swift Normal file
View File

@@ -0,0 +1,263 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXNN
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
private class Attention: Module {
let args: LlamaConfiguration
let repeats: Int
let scale: Float
@ModuleInfo(key: "q_proj") var wq: Linear
@ModuleInfo(key: "k_proj") var wk: Linear
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "o_proj") var wo: Linear
let rope: RoPE
public init(_ args: LlamaConfiguration) {
self.args = args
let dim = args.hiddenSize
let heads = args.attentionHeads
let kvHeads = args.kvHeads
self.repeats = heads / kvHeads
let headDim = args.hiddenSize / heads
self.scale = pow(Float(headDim), -0.5)
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
let ropeScale: Float
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
let factor = ropeScaling["factor"]
{
switch factor {
case .string:
fatalError("ropeScaling.factor must be a float")
case .float(let v):
ropeScale = 1 / v
}
} else {
ropeScale = 1
}
self.rope = RoPE(
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
scale: ropeScale)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
var queries = wq(x)
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
if repeats > 1 {
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
values = MLXArray.repeat(values, count: repeats, axis: 1)
}
if let (keyCache, valueCache) = cache {
queries = rope(queries, offset: keyCache.dim(2))
keys = rope(keys, offset: keyCache.dim(2))
keys = concatenated([keyCache, keys], axis: 2)
values = concatenated([valueCache, values], axis: 2)
} else {
queries = rope(queries)
keys = rope(keys)
}
var scores = (queries * self.scale).matmul(keys.transposed(0, 1, 3, 2))
if let mask {
scores = scores + mask
}
scores = softMax(scores.asType(.float32), axis: -1).asType(scores.dtype)
let output = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
return (wo(output), (keys, values))
}
}
private class MLP: Module, UnaryLayer {
@ModuleInfo(key: "gate_proj") var gate: Linear
@ModuleInfo(key: "down_proj") var down: Linear
@ModuleInfo(key: "up_proj") var up: Linear
public init(dimensions: Int, hiddenDimensions: Int) {
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
down(silu(gate(x)) * up(x))
}
}
private class TransformerBlock: Module {
@ModuleInfo(key: "self_attn") var attention: Attention
let mlp: MLP
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
public init(_ args: LlamaConfiguration) {
self._attention.wrappedValue = Attention(args)
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
self._inputLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
let h = x + r
r = mlp(postAttentionLayerNorm(h))
let out = h + r
return (out, cache)
}
}
public class LlamaModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
fileprivate let layers: [TransformerBlock]
let norm: RMSNorm
public init(_ args: LlamaConfiguration) {
precondition(args.vocabularySize > 0)
self._embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
TransformerBlock(args)
}
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var h = embedTokens(inputs)
var mask: MLXArray? = nil
if h.dim(1) > 1 {
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
mask = mask?.asType(h.dtype)
}
var newCache = [(MLXArray, MLXArray)]()
for (i, layer) in layers.enumerated() {
var cacheUpdate: (MLXArray, MLXArray)
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
newCache.append(cacheUpdate)
}
return (norm(h), newCache)
}
}
public class LlamaModel: Module, LLMModel {
let model: LlamaModelInner
@ModuleInfo(key: "lm_head") var lmHead: Linear
public init(_ args: LlamaConfiguration) {
self.model = LlamaModelInner(args)
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
let (out, cache) = model(inputs, cache: cache)
return (lmHead(out), cache)
}
}
public struct LlamaConfiguration: Codable {
var hiddenSize: Int
var hiddenLayers: Int
var intermediateSize: Int
var attentionHeads: Int
var rmsNormEps: Float
var vocabularySize: Int
var kvHeads: Int
var ropeTheta: Float = 10_000
var ropeTraditional: Bool = false
var ropeScaling: [String: StringOrNumber]? = nil
enum CodingKeys: String, CodingKey {
case hiddenSize = "hidden_size"
case hiddenLayers = "num_hidden_layers"
case intermediateSize = "intermediate_size"
case attentionHeads = "num_attention_heads"
case rmsNormEps = "rms_norm_eps"
case vocabularySize = "vocab_size"
case kvHeads = "num_key_value_heads"
case ropeTheta = "rope_theta"
case ropeTraditional = "rope_traditional"
case ropeScaling = "rope_scaling"
}
public init(from decoder: Decoder) throws {
// custom implementation to handle optional keys with required values
let container: KeyedDecodingContainer<LlamaConfiguration.CodingKeys> =
try decoder.container(
keyedBy: LlamaConfiguration.CodingKeys.self)
self.hiddenSize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenSize)
self.hiddenLayers = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenLayers)
self.intermediateSize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.intermediateSize)
self.attentionHeads = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.attentionHeads)
self.rmsNormEps = try container.decode(
Float.self, forKey: LlamaConfiguration.CodingKeys.rmsNormEps)
self.vocabularySize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.vocabularySize)
self.kvHeads = try container.decode(Int.self, forKey: LlamaConfiguration.CodingKeys.kvHeads)
self.ropeTheta =
try container.decodeIfPresent(
Float.self, forKey: LlamaConfiguration.CodingKeys.ropeTheta)
?? 10_000
self.ropeTraditional =
try container.decodeIfPresent(
Bool.self, forKey: LlamaConfiguration.CodingKeys.ropeTraditional) ?? false
self.ropeScaling = try container.decodeIfPresent(
[String: StringOrNumber].self, forKey: LlamaConfiguration.CodingKeys.ropeScaling)
}
}

302
Libraries/LLM/Phi.swift Normal file
View File

@@ -0,0 +1,302 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXNN
// https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/phi.py
// TODO: remove once open classes are in
public class MLXLayerNorm: Module, UnaryLayer {
let dimensions: Int
let eps: Float
let weight: MLXArray?
let bias: MLXArray?
/// Applies layer normalization [1] on the inputs.
///
/// See [LayerNorm python docs](https://ml-explore.github.io/mlx/build/html/python/nn/_autosummary/mlx.nn.LayerNorm.html) for more information.
///
/// ### References
/// 1. [https://arxiv.org/abs/1607.06450](https://arxiv.org/abs/1607.06450)
///
/// - Parameters:
/// - dimensions: number of features in the input
/// - eps: value added to the denominator for numerical stability
/// - affine: if `true` adds a trainable `weight` and `bias`
public init(dimensions: Int, eps: Float = 1e-5, affine: Bool = true) {
self.dimensions = dimensions
self.eps = eps
if affine {
self.weight = MLXArray.ones([dimensions])
self.bias = MLXArray.zeros([dimensions])
} else {
self.weight = nil
self.bias = nil
}
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
let means = mean(x, axis: -1, keepDims: true)
let variance = variance(x, axis: -1, keepDims: true)
let x = (x - means) * rsqrt(variance + eps)
if let weight, let bias {
return weight * x + bias
} else {
return x
}
}
}
private class LayerNorm: MLXLayerNorm {
override func callAsFunction(_ x: MLXArray) -> MLXArray {
super.callAsFunction(x.asType(Float.self)).asType(x.dtype)
}
}
private class PhiAttention: Module {
let args: PhiConfiguration
let heads: Int
let headDim: Int
let repeats: Int
@ModuleInfo(key: "q_proj") var wq: Linear
@ModuleInfo(key: "k_proj") var wk: Linear
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "dense") var dense: Linear
let rope: RoPE
public init(_ args: PhiConfiguration) {
self.args = args
let hiddenSize = args.hiddenSize
self.heads = args.attentionHeads
self.headDim = args.hiddenSize / heads
let kvHeads = args.kvHeads
self.repeats = heads / kvHeads
if headDim * heads != hiddenSize {
fatalError("hidden_size must be divisible by num_heads")
}
self._wq.wrappedValue = Linear(hiddenSize, heads * headDim, bias: true)
self._wk.wrappedValue = Linear(hiddenSize, kvHeads * headDim, bias: true)
self._wv.wrappedValue = Linear(hiddenSize, kvHeads * headDim, bias: true)
self._dense.wrappedValue = Linear(heads * headDim, hiddenSize, bias: true)
self.rope = RoPE(
dimensions: Int(args.partialRotaryFactor * Float(headDim)), traditional: false,
base: args.ropeTheta)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
var queries = wq(x)
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, heads, headDim).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, headDim).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, headDim).transposed(0, 2, 1, 3)
if repeats > 1 {
keys = MLXArray.repeat(keys, count: repeats, axis: 1)
values = MLXArray.repeat(values, count: repeats, axis: 1)
}
// Add RoPE to the queries and keys and combine them with the cache
if let (keyCache, valueCache) = cache {
queries = rope(queries, offset: keyCache.dim(2))
keys = rope(keys, offset: keyCache.dim(2))
keys = concatenated([keyCache, keys], axis: 2)
values = concatenated([valueCache, values], axis: 2)
} else {
queries = rope(queries)
keys = rope(keys)
}
queries = queries.asType(Float.self)
keys = keys.asType(Float.self)
// Finally perform the attention computation
let scale = sqrt(1 / Float(queries.dim(-1)))
var scores = (queries * scale).matmul(keys.transposed(0, 1, 3, 2))
if let mask {
scores = scores + mask
}
scores = softMax(scores, axis: -1).asType(values.dtype)
let valuesHat = matmul(scores, values).transposed(0, 2, 1, 3).reshaped(B, L, -1)
return (dense(valuesHat), (keys, values))
}
}
private class PhiMLP: Module, UnaryLayer {
@ModuleInfo var fc1: Linear
@ModuleInfo var fc2: Linear
@ModuleInfo var act: GELU
public init(_ config: PhiConfiguration) {
self.fc1 = Linear(config.hiddenSize, config.intermediateSize)
self.fc2 = Linear(config.intermediateSize, config.hiddenSize)
self.act = GELU(approximation: .precise)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
fc2(act(fc1(x)))
}
}
private class PhiDecoderLayer: Module {
@ModuleInfo(key: "self_attn") var selfAttention: PhiAttention
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: LayerNorm
var mlp: PhiMLP
public init(_ config: PhiConfiguration) {
self._selfAttention.wrappedValue = PhiAttention(config)
self._inputLayerNorm.wrappedValue = LayerNorm(
dimensions: config.hiddenSize, eps: config.layerNormEps)
self.mlp = PhiMLP(config)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let h = inputLayerNorm(x)
let (attentionH, cache) = selfAttention(h, mask: mask, cache: cache)
let ffH = mlp(h)
return (attentionH + ffH + x, cache)
}
}
private class PhiModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
@ModuleInfo var layers: [PhiDecoderLayer]
@ModuleInfo(key: "final_layernorm") var finalLayerNorm: LayerNorm
public init(_ args: PhiConfiguration) {
self._embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
PhiDecoderLayer(args)
}
self._finalLayerNorm.wrappedValue = LayerNorm(
dimensions: args.hiddenSize, eps: args.layerNormEps)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: [(MLXArray, MLXArray)]? = nil
) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var x = embedTokens(x)
var newCache = [(MLXArray, MLXArray)]()
for (i, layer) in layers.enumerated() {
var cacheUpdate: (MLXArray, MLXArray)
(x, cacheUpdate) = layer(x, mask: mask, cache: cache?[i])
newCache.append(cacheUpdate)
}
return (finalLayerNorm(x), newCache)
}
}
public class PhiModel: Module, LLMModel {
fileprivate let model: PhiModelInner
@ModuleInfo(key: "lm_head") var lmHead: Linear
public init(_ args: PhiConfiguration) {
self.model = PhiModelInner(args)
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: true)
}
public func callAsFunction(_ x: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var mask: MLXArray? = nil
if x.dim(1) > 1 {
mask = MultiHeadAttention.createAdditiveCausalMask(x.dim(1))
mask = mask?.asType(x.dtype)
}
let (y, cache) = model(x, mask: mask, cache: cache)
return (lmHead(y), cache)
}
}
public struct PhiConfiguration: Codable {
var maxPositionalEmbeddings = 2048
var vocabularySize = 51200
var hiddenSize = 2560
var attentionHeads = 32
var hiddenLayers = 32
var kvHeads = 32
var partialRotaryFactor: Float = 0.4
var intermediateSize = 10240
var layerNormEps: Float = 1e-5
var ropeTheta: Float = 10_000
enum CodingKeys: String, CodingKey {
case maxPositionalEmbeddings = "max_position_embeddings"
case vocabularySize = "vocab_size"
case hiddenSize = "hidden_size"
case attentionHeads = "num_attention_heads"
case hiddenLayers = "num_hidden_layers"
case kvHeads = "num_key_value_heads"
case partialRotaryFactor = "partial_rotary_factor"
case intermediateSize = "intermediate_size"
case layerNormEps = "layer_norm_eps"
case ropeTheta = "rope_theta"
}
public init(from decoder: Decoder) throws {
let container: KeyedDecodingContainer<PhiConfiguration.CodingKeys> = try decoder.container(
keyedBy: PhiConfiguration.CodingKeys.self)
self.maxPositionalEmbeddings = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.maxPositionalEmbeddings)
self.vocabularySize = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.vocabularySize)
self.hiddenSize = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.hiddenSize)
self.attentionHeads = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.attentionHeads)
self.hiddenLayers = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.hiddenLayers)
self.kvHeads =
try container.decodeIfPresent(Int.self, forKey: PhiConfiguration.CodingKeys.kvHeads)
?? attentionHeads
self.partialRotaryFactor = try container.decode(
Float.self, forKey: PhiConfiguration.CodingKeys.partialRotaryFactor)
self.intermediateSize = try container.decode(
Int.self, forKey: PhiConfiguration.CodingKeys.intermediateSize)
self.layerNormEps = try container.decode(
Float.self, forKey: PhiConfiguration.CodingKeys.layerNormEps)
self.ropeTheta =
try container.decodeIfPresent(Float.self, forKey: PhiConfiguration.CodingKeys.ropeTheta)
?? 10_000
}
}

11
Libraries/LLM/README.md Normal file
View File

@@ -0,0 +1,11 @@
# Llama
This is a port of the llama model from:
- https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
You can use this to load models from huggingface, e.g.:
- https://huggingface.co/mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
See [llm-tool](../../Tools/llm-tool)

110
Libraries/LLM/Util.swift Normal file
View File

@@ -0,0 +1,110 @@
// Copyright © 2024 Apple Inc.
import AsyncAlgorithms
import Foundation
import Hub
import MLX
import MLXNN
import MLXRandom
import Tokenizers
/// Load and return the model and tokenizer
public func load(
hub: HubApi = HubApi(), name: String, progressHandler: @escaping (Progress) -> Void = { _ in }
) async throws -> (LLMModel, Tokenizer) {
// note: this doesn't have a way to pass the HubApi
let tokenizer = try await AutoTokenizer.from(pretrained: name)
// download the model weights and config
let repo = Hub.Repo(id: name)
let modelFiles = ["config.json", "weights.00.safetensors"]
let modelDirectory = try await hub.snapshot(
from: repo, matching: modelFiles, progressHandler: progressHandler)
// create the model (no weights loaded)
let configurationURL = modelDirectory.appending(component: "config.json")
let baseConfig = try JSONDecoder().decode(
BaseConfiguration.self, from: Data(contentsOf: configurationURL))
let model = try baseConfig.modelType.createModel(configuration: configurationURL)
// set up the model
if let quantization = baseConfig.quantization {
QuantizedLinear.quantize(
model: model, groupSize: quantization.groupSize, bits: quantization.bits)
}
// apply the loaded weights
let weights = try loadArrays(url: modelDirectory.appending(component: "weights.00.safetensors"))
let parameters = ModuleParameters.unflattened(weights)
try model.update(parameters: parameters, verify: [.all])
eval(model.parameters())
return (model, tokenizer)
}
private func sample(logits: MLXArray, temp: Float) -> MLXArray {
if temp == 0 {
return argMax(logits, axis: -1)
} else {
return categorical(logits * (1 / temp))
}
}
/// Synchronous generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py
public struct TokenIterator: Sequence, IteratorProtocol {
let model: LLMModel
let temp: Float
var y: MLXArray
var cache: [(MLXArray, MLXArray)]
var first = true
public init(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) {
self.model = model
self.temp = temp
self.y = prompt
self.cache = []
}
mutating public func next() -> MLXArray? {
var logits: MLXArray
(logits, cache) = model(expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
return y
}
}
/// Async generator of tokens.
///
/// Port of `generate_step()` from https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/utils.py.
///
/// Note that because MLXArray is not thread safe this eval's the result and sends the TokenId back
/// to the caller.
public func generate(prompt: MLXArray, model: LLMModel, temp: Float = 0.0) -> (
Task<Void, Never>, AsyncBufferSequence<AsyncChannel<Int>>
) {
let channel = AsyncChannel<Int>()
let buffer = channel.buffer(policy: .bounded(10))
let task = Task {
var y = prompt
var cache = [(MLXArray, MLXArray)]()
while !Task.isCancelled {
var logits: MLXArray
(logits, cache) = model(
expandedDimensions(y, axis: 0), cache: cache.isEmpty ? nil : cache)
y = sample(logits: logits[-1, axis: 1], temp: temp)
eval(y)
await channel.send(y.item(Int.self))
}
}
return (task, buffer)
}

102
Libraries/MNIST/Files.swift Normal file
View File

@@ -0,0 +1,102 @@
// Copyright © 2024 Apple Inc.
import Foundation
import Gzip
import MLX
// based on https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py
public enum Use: String, Hashable {
case test
case training
}
public enum DataKind: String, Hashable {
case images
case labels
}
public struct FileKind: Hashable, CustomStringConvertible {
let use: Use
let data: DataKind
public init(_ use: Use, _ data: DataKind) {
self.use = use
self.data = data
}
public var description: String {
"\(use.rawValue)-\(data.rawValue)"
}
}
struct LoadInfo {
let name: String
let offset: Int
let convert: (MLXArray) -> MLXArray
}
let baseURL = URL(string: "http://yann.lecun.com/exdb/mnist/")!
let files = [
FileKind(.training, .images): LoadInfo(
name: "train-images-idx3-ubyte.gz",
offset: 16,
convert: {
$0.reshaped([-1, 28 * 28]).asType(.float32) / 255.0
}),
FileKind(.test, .images): LoadInfo(
name: "t10k-images-idx3-ubyte.gz",
offset: 16,
convert: {
$0.reshaped([-1, 28 * 28]).asType(.float32) / 255.0
}),
FileKind(.training, .labels): LoadInfo(
name: "train-labels-idx1-ubyte.gz",
offset: 8,
convert: {
$0.asType(.uint32)
}),
FileKind(.test, .labels): LoadInfo(
name: "t10k-labels-idx1-ubyte.gz",
offset: 8,
convert: {
$0.asType(.uint32)
}),
]
public func download(into: URL) async throws {
for (_, info) in files {
let fileURL = into.appending(component: info.name)
if !FileManager.default.fileExists(atPath: fileURL.path()) {
print("Download: \(info.name)")
let url = baseURL.appending(component: info.name)
let (data, response) = try await URLSession.shared.data(from: url)
guard let httpResponse = response as? HTTPURLResponse else {
fatalError("Unable to download \(url), not an http response: \(response)")
}
guard httpResponse.statusCode == 200 else {
fatalError("Unable to download \(url): \(httpResponse)")
}
try data.write(to: fileURL)
}
}
}
public func load(from: URL) throws -> [FileKind: MLXArray] {
var result = [FileKind: MLXArray]()
for (key, info) in files {
let fileURL = from.appending(component: info.name)
let data = try Data(contentsOf: fileURL).gunzipped()
let array = MLXArray(
data.dropFirst(info.offset), [data.count - info.offset], type: UInt8.self)
result[key] = info.convert(array)
}
return result
}

1
Libraries/MNIST/MNIST.h Normal file
View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,73 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXNN
// based on https://github.com/ml-explore/mlx-examples/blob/main/mnist/main.py
public class MLP: Module, UnaryLayer {
@ModuleInfo var layers: [Linear]
public init(layers: Int, inputDimensions: Int, hiddenDimensions: Int, outputDimensions: Int) {
let layerSizes =
[inputDimensions] + Array(repeating: hiddenDimensions, count: layers) + [
outputDimensions
]
self.layers = zip(layerSizes.dropLast(), layerSizes.dropFirst())
.map {
Linear($0, $1)
}
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
var x = x
for l in layers.dropLast() {
x = relu(l(x))
}
return layers.last!(x)
}
}
public func loss(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray {
crossEntropy(logits: model(x), targets: y, reduction: .mean)
}
public func eval(model: MLP, x: MLXArray, y: MLXArray) -> MLXArray {
mean(argMax(model(x), axis: 1) .== y)
}
private struct BatchSequence: Sequence, IteratorProtocol {
let batchSize: Int
let x: MLXArray
let y: MLXArray
let indexes: MLXArray
var index = 0
init(batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator)
{
self.batchSize = batchSize
self.x = x
self.y = y
self.indexes = MLXArray(Array(0 ..< y.size).shuffled(using: &generator))
}
mutating func next() -> (MLXArray, MLXArray)? {
guard index < y.size else { return nil }
let range = index ..< Swift.min(index + batchSize, y.size)
index += batchSize
let ids = indexes[range]
return (x[ids], y[ids])
}
}
public func iterateBatches(
batchSize: Int, x: MLXArray, y: MLXArray, using generator: inout any RandomNumberGenerator
) -> some Sequence<(MLXArray, MLXArray)> {
BatchSequence(batchSize: batchSize, x: x, y: y, using: &generator)
}

13
Libraries/MNIST/README.md Normal file
View File

@@ -0,0 +1,13 @@
# MNIST
This is a port of the MNIST model and training code from:
- https://github.com/ml-explore/mlx-examples/blob/main/mnist
It provides code to:
- download the test/train data
- provides the MNIST model (MLP)
- some functions to shuffle and batch the data
See [mnist-tool](../../Tools/mnist-tool) for an example of how to run this. The training loop also lives there.

View File

@@ -0,0 +1,30 @@
// Copyright © 2024 Apple Inc.
import Foundation
// From https://github.com/apple/swift/blob/cb0fb1ea051631219c0b944b84c78571448d58c2/benchmark/utils/TestsUtils.swift#L254
//
// This is just a seedable RandomNumberGenerator for shuffle()
// This is a fixed-increment version of Java 8's SplittableRandom generator.
// It is a very fast generator passing BigCrush, with 64 bits of state.
// See http://dx.doi.org/10.1145/2714064.2660195 and
// http://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
//
// Derived from public domain C implementation by Sebastiano Vigna
// See http://xoshiro.di.unimi.it/splitmix64.c
public struct SplitMix64: RandomNumberGenerator {
private var state: UInt64
public init(seed: UInt64) {
self.state = seed
}
public mutating func next() -> UInt64 {
self.state &+= 0x9e37_79b9_7f4a_7c15
var z: UInt64 = self.state
z = (z ^ (z &>> 30)) &* 0xbf58_476d_1ce4_e5b9
z = (z ^ (z &>> 27)) &* 0x94d0_49bb_1331_11eb
return z ^ (z &>> 31)
}
}

22
README.md Normal file
View File

@@ -0,0 +1,22 @@
# mlx-examples-swift
Example mlx-swift programs.
## LinearModelTraining
A simple linear model and a training loop.
- [README](Tools/LinearModelTraining/README.md)
## llm-tool
A command line tool for generating text using a Llama / Mistral model:
- [README](Tools/llm-tool/README.md)
## mnist-tool
A command line tool for training an MNIST (MLP) model:
- [README](Tools/mnist-tool/README.md)

View File

@@ -0,0 +1,113 @@
// Copyright © 2024 Apple Inc.
import ArgumentParser
import Foundation
import MLX
import MLXNN
import MLXOptimizers
import MLXRandom
extension MLX.DeviceType: ExpressibleByArgument {
public init?(argument: String) {
self.init(rawValue: argument)
}
}
@main
struct Train: AsyncParsableCommand {
@Option var epochs = 20
@Option var batchSize = 8
@Option var m: Float = 0.25
@Option var b: Float = 7
@Flag var compile = false
@Option var device = DeviceType.cpu
func run() async throws {
Device.setDefault(device: Device(device))
// A very simple model that implements the equation
// for a linear function: y = mx + b. This can be trained
// to match data -- in this case an unknown (to the model)
// linear function.
//
// This is a nice example because most people know how
// linear functions work and we can see how the slope
// and intercept converge.
class LinearFunctionModel: Module, UnaryLayer {
let m = MLXRandom.uniform(low: -5.0, high: 5.0)
let b = MLXRandom.uniform(low: -5.0, high: 5.0)
func callAsFunction(_ x: MLXArray) -> MLXArray {
m * x + b
}
}
// measure the distance from the prediction (model(x)) and the
// ground truth (y). this gives feedback on how close the
// prediction is from matching the truth
func loss(model: LinearFunctionModel, x: MLXArray, y: MLXArray) -> MLXArray {
mseLoss(predictions: model(x), targets: y, reduction: .mean)
}
let model = LinearFunctionModel()
eval(model.parameters())
let lg = valueAndGrad(model: model, loss)
// the optimizer will use the gradients update the model parameters
let optimizer = SGD(learningRate: 1e-1)
// the function to train our model against -- it doesn't have
// to be linear, but matching what the model models is easy
// to understand
func f(_ x: MLXArray) -> MLXArray {
// these are the target parameters
let m = self.m
let b = self.b
// our actual function
return m * x + b
}
func step(_ x: MLXArray, _ y: MLXArray) -> MLXArray {
let (loss, grads) = lg(model, x, y)
optimizer.update(model: model, gradients: grads)
return loss
}
let resolvedStep =
self.compile
? MLX.compile(inputs: [model, optimizer], outputs: [model, optimizer], step) : step
for _ in 0 ..< epochs {
// we expect that the parameters will approach the targets
print("target: b = \(b), m = \(m)")
print("parameters: \(model.parameters())")
// generate random training data along with the ground truth.
// notice that the shape is [B, 1] where B is the batch
// dimension -- this allows us to train on several samples simultaneously
//
// note: a very large batch size will take longer to converge because
// the gradient will be representing too many samples down into
// a single float parameter.
let x = MLXRandom.uniform(low: -5.0, high: 5.0, [batchSize, 1])
let y = f(x)
eval(x, y)
// compute the loss and gradients. use the optimizer
// to adjust the parameters closer to the target
let loss = resolvedStep(x, y)
eval(model, optimizer)
// we should see this converge toward 0
print("loss: \(loss)")
}
}
}

View File

@@ -0,0 +1,14 @@
# LinearModelTraining
A command line tool that creates a Model that represents:
f(x) = mx + b
and trains it against an unknown linear function. Very
simple but illustrates:
- a very simple model with parameters
- a loss function
- the gradient
- use of an optimizers
- the training loop

View File

@@ -0,0 +1,102 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
/// mlx-swift tutorial based on:
/// https://github.com/ml-explore/mlx/blob/main/examples/cpp/tutorial.cpp
@main
struct Tutorial {
static func scalarBasics() {
// create a scalar array
let x = MLXArray(1.0)
// the datatype is .float32
let dtype = x.dtype
assert(dtype == .float32)
// get the value
let s = x.item(Float.self)
assert(s == 1.0)
// reading the value with a different type is a fatal error
// let i = x.item(Int.self)
// scalars have a size of 1
let size = x.size
assert(size == 1)
// scalars have 0 dimensions
let ndim = x.ndim
assert(ndim == 0)
// scalar shapes are empty arrays
let shape = x.shape
assert(shape == [])
}
static func arrayBasics() {
// make a multidimensional array.
//
// Note: the argument is a [Double] array literal, which is not
// a supported type, but we can explicitly convert it to [Float]
// when we create the MLXArray.
let x = MLXArray(converting: [1.0, 2.0, 3.0, 4.0], [2, 2])
// mlx is row-major by default so the first row of this array
// is [1.0, 2.0] and the second row is [3.0, 4.0]
print(x[0])
print(x[1])
// make an array of shape [2, 2] filled with ones
let y = MLXArray.ones([2, 2])
// pointwise add x and y
let z = x + y
// mlx is lazy by default. At this point `z` only
// has a shape and a type but no actual data
assert(z.dtype == .float32)
assert(z.shape == [2, 2])
// To actually run the computation you must evaluate `z`.
// Under the hood, mlx records operations in a graph.
// The variable `z` is a node in the graph which points to its operation
// and inputs. When `eval` is called on an array (or arrays), the array and
// all of its dependencies are recursively evaluated to produce the result.
// Once an array is evaluated, it has data and is detached from its inputs.
// Note: this is being called for demonstration purposes -- all reads
// ensure the array is evaluated.
z.eval()
// this implicitly evaluates z before converting to a description
print(z)
}
static func automaticDifferentiation() {
func fn(_ x: MLXArray) -> MLXArray {
x.square()
}
let gradFn = grad(fn)
let x = MLXArray(1.5)
let dfdx = gradFn(x)
print(dfdx)
assert(dfdx.item() == Float(2 * 1.5))
let df2dx2 = grad(grad(fn))(x)
print(df2dx2)
assert(df2dx2.item() == Float(2))
}
static func main() {
scalarBasics()
arrayBasics()
automaticDifferentiation()
}
}

View File

@@ -0,0 +1,190 @@
// Copyright © 2024 Apple Inc.
import ArgumentParser
import Foundation
import LLM
import MLX
import MLXRandom
struct LLMTool: AsyncParsableCommand {
static var configuration = CommandConfiguration(
abstract: "Command line tool for generating text using Llama models",
subcommands: [SyncGenerator.self, AsyncGenerator.self],
defaultSubcommand: SyncGenerator.self)
}
@main
struct SyncGenerator: AsyncParsableCommand {
static var configuration = CommandConfiguration(
commandName: "sync",
abstract: "Synchronous generator"
)
@Option(name: .long, help: "Name of the huggingface model")
var model: String = "mlx-community/Mistral-7B-v0.1-hf-4bit-mlx"
@Option(name: .shortAndLong, help: "The message to be processed by the model")
var prompt = "compare swift and python"
@Option(name: .shortAndLong, help: "Maximum number of tokens to generate")
var maxTokens = 100
@Option(name: .shortAndLong, help: "The sampling temperature")
var temperature: Float = 0.0
@Option(name: .long, help: "The PRNG seed")
var seed: UInt64 = 0
@MainActor
func run() async throws {
MLXRandom.seed(seed)
let (model, tokenizer) = try await load(name: model)
print("Starting generation ...")
print(prompt, terminator: "")
var start = Date.timeIntervalSinceReferenceDate
var promptTime: TimeInterval = 0
let prompt = MLXArray(tokenizer.encode(text: prompt))
// collect the tokens and keep track of how much of the string
// we have printed already
var tokens = [Int]()
var printed = 0
for token in TokenIterator(prompt: prompt, model: model, temp: temperature) {
if tokens.isEmpty {
eval(token)
let now = Date.timeIntervalSinceReferenceDate
promptTime = now - start
start = now
}
let t = token.item(Int.self)
if t == tokenizer.unknownTokenId {
break
}
tokens.append(t)
// print any new parts of the string
let fullOutput = tokenizer.decode(tokens: tokens)
let emitLength = fullOutput.count - printed
let suffix = fullOutput.suffix(emitLength)
print(suffix, terminator: "")
fflush(stdout)
printed = fullOutput.count
if tokens.count == maxTokens {
break
}
}
print()
print("------")
let now = Date.timeIntervalSinceReferenceDate
let generateTime = now - start
print(
"""
Prompt Tokens per second: \((Double(prompt.size) / promptTime).formatted())
Generation tokens per second: \((Double(tokens.count - 1) / generateTime).formatted())
""")
}
}
/// Example of an async generator.
///
/// Note that all of the computation is done on another thread and TokenId (Int32) are sent
/// rather than MLXArray.
struct AsyncGenerator: AsyncParsableCommand {
static var configuration = CommandConfiguration(
commandName: "async",
abstract: "async generator"
)
@Option(name: .long, help: "Name of the huggingface model")
var model: String = "mlx-community/Mistral-7B-v0.1-hf-4bit-mlx"
@Option(name: .shortAndLong, help: "The message to be processed by the model")
var prompt = "compare swift and python"
@Option(name: .shortAndLong, help: "Maximum number of tokens to generate")
var maxTokens = 100
@Option(name: .shortAndLong, help: "The sampling temperature")
var temperature: Float = 0.0
@Option(name: .long, help: "The PRNG seed")
var seed: UInt64 = 0
@MainActor
func run() async throws {
MLXRandom.seed(seed)
let (model, tokenizer) = try await load(name: model)
print("Starting generation ...")
print(prompt, terminator: "")
var start = Date.timeIntervalSinceReferenceDate
var promptTime: TimeInterval = 0
let prompt = MLXArray(tokenizer.encode(text: prompt))
// collect the tokens and keep track of how much of the string
// we have printed already
var tokens = [Int]()
var printed = 0
let (task, channel) = generate(prompt: prompt, model: model, temp: temperature)
for await token in channel {
if tokens.isEmpty {
let now = Date.timeIntervalSinceReferenceDate
promptTime = now - start
start = now
}
if token == tokenizer.unknownTokenId {
break
}
tokens.append(token)
// print any new parts of the string
let fullOutput = tokenizer.decode(tokens: tokens)
let emitLength = fullOutput.count - printed
let suffix = fullOutput.suffix(emitLength)
print(suffix, terminator: "")
fflush(stdout)
printed = fullOutput.count
if tokens.count == maxTokens {
break
}
}
// tell the task to stop
task.cancel()
print()
print("------")
let now = Date.timeIntervalSinceReferenceDate
let generateTime = now - start
print(
"""
Prompt Tokens per second: \((Double(prompt.size) / promptTime).formatted())
Generation tokens per second: \((Double(tokens.count - 1) / generateTime).formatted())
""")
// wait for the task to complete -- since it is running async, it might
// be in the middle of running the model
try? await Task.sleep(for: .milliseconds(500))
}
}

38
Tools/llm-tool/README.md Normal file
View File

@@ -0,0 +1,38 @@
# llm-tool
See various READMEs:
- [Llama](../../Libraries/Llama/README.md)
### Building
Build the `llm-tool` scheme in Xcode.
### Running (Xcode)
To run this in Xcode simply press cmd-opt-r to set the scheme arguments. For example:
```
--model mlx-community/Mistral-7B-v0.1-hf-4bit-mlx
--prompt "swift programming language"
--max-tokens 50
```
Then cmd-r to run.
> Note: you may be prompted for access to your Documents directory -- this is where
the huggingface HubApi stores the downloaded files.
### Running (Command Line)
`llm-tool` can also be run from the command line if built from Xcode, but
the `DYLD_FRAMEWORK_PATH` must be set so that the frameworks and bundles can be found:
- [MLX troubleshooting](https://ml-explore.github.io/mlx-swift/MLX/documentation/mlx/troubleshooting)
The easiest way to do this is drag the Products/llm-tool into Terminal to get the path:
```
DYLD_FRAMEWORK_PATH=~/Library/Developer/Xcode/DerivedData/mlx-examples-swift-ceuohnhzsownvsbbleukxoksddja/Build/Products/Debug ~/Library/Developer/Xcode/DerivedData/mlx-examples-swift-ceuohnhzsownvsbbleukxoksddja/Build/Products/Debug/llm-tool --prompt "swift programming language"
```

View File

@@ -0,0 +1,108 @@
// Copyright © 2024 Apple Inc.
import ArgumentParser
import Foundation
import MLX
import MLXNN
import MLXOptimizers
import MLXRandom
import MNIST
@main
struct MNISTTool: AsyncParsableCommand {
static var configuration = CommandConfiguration(
abstract: "Command line tool for training mnist models",
subcommands: [Train.self],
defaultSubcommand: Train.self)
}
extension MLX.DeviceType: ExpressibleByArgument {
public init?(argument: String) {
self.init(rawValue: argument)
}
}
struct Train: AsyncParsableCommand {
@Option(name: .long, help: "Directory with the training data")
var data: String
@Option(name: .long, help: "The PRNG seed")
var seed: UInt64 = 0
@Option var layers = 2
@Option var hidden = 32
@Option var batchSize = 256
@Option var epochs = 20
@Option var learningRate: Float = 1e-1
@Option var classes = 10
@Option var device = DeviceType.cpu
@Flag var compile = false
func run() async throws {
Device.setDefault(device: Device(device))
MLXRandom.seed(seed)
var generator: RandomNumberGenerator = SplitMix64(seed: seed)
// load the data
let url = URL(filePath: data)
try FileManager.default.createDirectory(at: url, withIntermediateDirectories: true)
try await download(into: url)
let data = try load(from: url)
let trainImages = data[.init(.training, .images)]!
let trainLabels = data[.init(.training, .labels)]!
let testImages = data[.init(.test, .images)]!
let testLabels = data[.init(.test, .labels)]!
// create the model
let model = MLP(
layers: layers, inputDimensions: trainImages.dim(-1), hiddenDimensions: hidden,
outputDimensions: classes)
eval(model.parameters())
let lg = valueAndGrad(model: model, loss)
let optimizer = SGD(learningRate: learningRate)
func step(_ x: MLXArray, _ y: MLXArray) -> MLXArray {
let (loss, grads) = lg(model, x, y)
optimizer.update(model: model, gradients: grads)
return loss
}
let resolvedStep =
compile
? MLX.compile(inputs: [model, optimizer], outputs: [model, optimizer], step) : step
for e in 0 ..< epochs {
let start = Date.timeIntervalSinceReferenceDate
for (x, y) in iterateBatches(
batchSize: batchSize, x: trainImages, y: trainLabels, using: &generator)
{
_ = resolvedStep(x, y)
// eval the parameters so the next iteration is independent
eval(model, optimizer)
}
let accuracy = eval(model: model, x: testImages, y: testLabels)
let end = Date.timeIntervalSinceReferenceDate
print(
"""
Epoch \(e): test accuracy \(accuracy.item(Float.self).formatted())
Time: \((end - start).formatted())
"""
)
}
}
}

View File

@@ -0,0 +1,36 @@
# mnist-tool
See other README:
- [MNIST](../../Libraries/MNIST/README.md)
### Building
`mnist-tool` has no dependencies outside of the package dependencies
represented in xcode.
When you run the tool it will download the test/train datasets and
store them in a specified directory (see run arguments -- default is /tmp).
Simply build the project in xcode.
### Running (Xcode)
To run this in Xcode simply press cmd-opt-r to set the scheme arguments. For example:
```
--data /tmp
```
Then cmd-r to run.
### Running (CommandLine)
`mnist-tool` can also be run from the command line if built from Xcode, but
the `DYLD_FRAMEWORK_PATH` must be set so that the frameworks and bundles can be found:
- [MLX troubleshooting](https://ml-explore.github.io/mlx-swift/MLX/documentation/mlx/troubleshooting)
```
DYLD_FRAMEWORK_PATH=~/Library/Developer/Xcode/DerivedData/mlx-examples-swift-ceuohnhzsownvsbbleukxoksddja/Build/Products/Debug ~/Library/Developer/Xcode/DerivedData/mlx-examples-swift-ceuohnhzsownvsbbleukxoksddja/Build/Products/Debug/mnist-tool --data /tmp
```

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:">
</FileRef>
</Workspace>

View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>IDEDidComputeMac32BitWarning</key>
<true/>
</dict>
</plist>

View File

@@ -0,0 +1,68 @@
{
"pins" : [
{
"identity" : "gzipswift",
"kind" : "remoteSourceControl",
"location" : "https://github.com/1024jp/GzipSwift",
"state" : {
"revision" : "731037f6cc2be2ec01562f6597c1d0aa3fe6fd05",
"version" : "6.0.1"
}
},
{
"identity" : "mlx-swift",
"kind" : "remoteSourceControl",
"location" : "https://github.com/ml-explore/mlx-swift",
"state" : {
"branch" : "main",
"revision" : "cadf5f8187ac0894e66cd288217e2eda9f2c933d"
}
},
{
"identity" : "swift-argument-parser",
"kind" : "remoteSourceControl",
"location" : "https://github.com/apple/swift-argument-parser.git",
"state" : {
"revision" : "c8ed701b513cf5177118a175d85fbbbcd707ab41",
"version" : "1.3.0"
}
},
{
"identity" : "swift-async-algorithms",
"kind" : "remoteSourceControl",
"location" : "https://github.com/apple/swift-async-algorithms",
"state" : {
"revision" : "da4e36f86544cdf733a40d59b3a2267e3a7bbf36",
"version" : "1.0.0"
}
},
{
"identity" : "swift-collections",
"kind" : "remoteSourceControl",
"location" : "https://github.com/apple/swift-collections.git",
"state" : {
"revision" : "d029d9d39c87bed85b1c50adee7c41795261a192",
"version" : "1.0.6"
}
},
{
"identity" : "swift-numerics",
"kind" : "remoteSourceControl",
"location" : "https://github.com/apple/swift-numerics",
"state" : {
"revision" : "0a5bc04095a675662cf24757cc0640aa2204253b",
"version" : "1.0.2"
}
},
{
"identity" : "swift-transformers",
"kind" : "remoteSourceControl",
"location" : "https://github.com/huggingface/swift-transformers",
"state" : {
"revision" : "564442fba36b0b694d730a62d0593e5f54043b55",
"version" : "0.1.2"
}
}
],
"version" : 2
}