231 lines
5.2 KiB
Markdown
231 lines
5.2 KiB
Markdown
## Install and Use Locally
|
||
|
||
### Table of Content
|
||
- [Linux and macOS Install](#linux-and-macos-install)
|
||
- [Docker Install for Windows and macOS](#docker-install)
|
||
- [Usage](#usage)
|
||
- [Web UI](#webui)
|
||
- [CLI](#cli)
|
||
- [Python API](#python-api)
|
||
|
||
### Linux and macOS Install
|
||
The repo is developed and tested on `Ubuntu 20.04` and `Python 3.9`.
|
||
```bash
|
||
git clone https://github.com/myshell-ai/MeloTTS.git
|
||
cd MeloTTS
|
||
pip install -e .
|
||
python -m unidic download
|
||
```
|
||
If you encountered issues in macOS install, try the [Docker Install](#docker-install)
|
||
|
||
### Docker Install
|
||
To avoid compatibility issues, for Windows users and some macOS users, we suggest to run via Docker. Ensure that [you have Docker installed](https://docs.docker.com/engine/install/).
|
||
|
||
**Build Docker**
|
||
|
||
This could take a few minutes.
|
||
```bash
|
||
git clone https://github.com/myshell-ai/MeloTTS.git
|
||
cd MeloTTS
|
||
docker build -t melotts .
|
||
```
|
||
|
||
**Run Docker**
|
||
```bash
|
||
docker run -it -p 8888:8888 melotts
|
||
```
|
||
If your local machine has GPU, then you can choose to run:
|
||
```bash
|
||
docker run --gpus all -it -p 8888:8888 melotts
|
||
```
|
||
Then open [http://localhost:8888](http://localhost:8888) in your browser to use the app.
|
||
|
||
## Usage
|
||
|
||
### WebUI
|
||
|
||
The WebUI supports muliple languages and voices. First, follow the installation steps. Then, simply run:
|
||
|
||
```bash
|
||
melo-ui
|
||
# Or: python melo/app.py
|
||
```
|
||
|
||
### CLI
|
||
|
||
You may use the MeloTTS CLI to interact with MeloTTS. The CLI may be invoked using either `melotts` or `melo`. Here are some examples:
|
||
|
||
**Read English text:**
|
||
|
||
```bash
|
||
melo "Text to read" output.wav
|
||
```
|
||
|
||
**Specify a language:**
|
||
|
||
```bash
|
||
melo "Text to read" output.wav --language EN
|
||
```
|
||
|
||
**Specify a speaker:**
|
||
|
||
```bash
|
||
melo "Text to read" output.wav --language EN --speaker EN-US
|
||
melo "Text to read" output.wav --language EN --speaker EN-AU
|
||
```
|
||
|
||
The available speakers are: `EN-Default`, `EN-US`, `EN-BR`, `EN_INDIA` `EN-AU`.
|
||
|
||
**Specify a speed:**
|
||
|
||
```bash
|
||
melo "Text to read" output.wav --language EN --speaker EN-US --speed 1.5
|
||
melo "Text to read" output.wav --speed 1.5
|
||
```
|
||
|
||
**Use a different language:**
|
||
|
||
```bash
|
||
melo "text-to-speech 领域近年来发展迅速" zh.wav -l ZH
|
||
```
|
||
|
||
**Load from a file:**
|
||
|
||
```bash
|
||
melo file.txt out.wav --file
|
||
```
|
||
|
||
The full API documentation may be found using:
|
||
|
||
```bash
|
||
melo --help
|
||
```
|
||
|
||
### Python API
|
||
|
||
#### English with Multiple Accents
|
||
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
|
||
# CPU is sufficient for real-time inference.
|
||
# You can set it manually to 'cpu' or 'cuda' or 'cuda:0' or 'mps'
|
||
device = 'auto' # Will automatically use GPU if available
|
||
|
||
# English
|
||
text = "Did you ever hear a folk tale about a giant turtle?"
|
||
model = TTS(language='EN', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
# American accent
|
||
output_path = 'en-us.wav'
|
||
model.tts_to_file(text, speaker_ids['EN-US'], output_path, speed=speed)
|
||
|
||
# British accent
|
||
output_path = 'en-br.wav'
|
||
model.tts_to_file(text, speaker_ids['EN-BR'], output_path, speed=speed)
|
||
|
||
# Indian accent
|
||
output_path = 'en-india.wav'
|
||
model.tts_to_file(text, speaker_ids['EN_INDIA'], output_path, speed=speed)
|
||
|
||
# Australian accent
|
||
output_path = 'en-au.wav'
|
||
model.tts_to_file(text, speaker_ids['EN-AU'], output_path, speed=speed)
|
||
|
||
# Default accent
|
||
output_path = 'en-default.wav'
|
||
model.tts_to_file(text, speaker_ids['EN-Default'], output_path, speed=speed)
|
||
|
||
```
|
||
|
||
#### Spanish
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
|
||
# CPU is sufficient for real-time inference.
|
||
# You can also change to cuda:0
|
||
device = 'cpu'
|
||
|
||
text = "El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante."
|
||
model = TTS(language='ES', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
output_path = 'es.wav'
|
||
model.tts_to_file(text, speaker_ids['ES'], output_path, speed=speed)
|
||
```
|
||
|
||
#### French
|
||
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
device = 'cpu' # or cuda:0
|
||
|
||
text = "La lueur dorée du soleil caresse les vagues, peignant le ciel d'une palette éblouissante."
|
||
model = TTS(language='FR', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
output_path = 'fr.wav'
|
||
model.tts_to_file(text, speaker_ids['FR'], output_path, speed=speed)
|
||
```
|
||
|
||
#### Chinese
|
||
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
device = 'cpu' # or cuda:0
|
||
|
||
text = "我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。"
|
||
model = TTS(language='ZH', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
output_path = 'zh.wav'
|
||
model.tts_to_file(text, speaker_ids['ZH'], output_path, speed=speed)
|
||
```
|
||
|
||
#### Japanese
|
||
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
device = 'cpu' # or cuda:0
|
||
|
||
text = "彼は毎朝ジョギングをして体を健康に保っています。"
|
||
model = TTS(language='JP', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
output_path = 'jp.wav'
|
||
model.tts_to_file(text, speaker_ids['JP'], output_path, speed=speed)
|
||
```
|
||
|
||
#### Korean
|
||
|
||
```python
|
||
from melo.api import TTS
|
||
|
||
# Speed is adjustable
|
||
speed = 1.0
|
||
device = 'cpu' # or cuda:0
|
||
|
||
text = "안녕하세요! 오늘은 날씨가 정말 좋네요."
|
||
model = TTS(language='KR', device=device)
|
||
speaker_ids = model.hps.data.spk2id
|
||
|
||
output_path = 'kr.wav'
|
||
model.tts_to_file(text, speaker_ids['KR'], output_path, speed=speed)
|
||
```
|