Compare commits

...

10 Commits

Author SHA1 Message Date
zs
747fd64ce0 Merge branch 'main' of https://github.com/ml-explore/mlx-swift-examples 2024-08-02 12:10:56 +08:00
zs
b1fbb95f17 配置 2024-08-02 12:10:49 +08:00
Awni Hannun
885e520ecd Some fixes for gemma2 (#99)
* some fixes for gemma2

* format

* fixes

* format
2024-08-01 20:06:11 -07:00
Anthony
ac6bdfccec Add Llama 3.1 (#98)
* Update Mistral 7B config

* Add Mistral NeMo

* Update for Llama 3.1

* Align LlamaConfiguration with Python implementation

* Fix model configuration names

* Refine DynamicNTKScalingRoPE

* compute base only once

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-26 13:05:42 -07:00
Anthony DePasquale
c4fda0e036 Add Mistral NeMo (#97)
* Update Mistral 7B config

* Add Mistral NeMo
2024-07-25 08:01:26 -07:00
Anthony DePasquale
a2e8d7e469 Add SmolLM (#95) 2024-07-23 15:42:52 -07:00
Anthony DePasquale
2a2931ba8d Fix extra EOS tokens (#91)
* Fix extra EOS tokens

* Fix pre-commit error
2024-07-03 16:22:29 -07:00
Anthony DePasquale
0c08f3a7e4 Add Gemma 2 (#88) 2024-07-01 09:35:43 -07:00
David Koski
7957378077 pin gzip dependency (#87)
- later versions have compile issues: https://github.com/1024jp/GzipSwift/issues/65

fixes: https://github.com/ml-explore/mlx-swift-examples/issues/85
2024-06-27 13:48:11 -07:00
David Koski
61c0703c91 switch to tags where possible (#80) 2024-06-10 15:44:36 -07:00
12 changed files with 628 additions and 132 deletions

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/slessans/pre-commit-swift-format
rev: ""
rev: "fd627de92bdf84a75c924ed95691336d14e94cf1"
hooks:
- id: swift-format
args: ["--configuration", ".swift-format"]

View File

@@ -159,7 +159,7 @@ class LLMEvaluator {
/// this controls which model loads -- phi4bit is one of the smaller ones so this will fit on
/// more devices
let modelConfiguration = ModelConfiguration.phi34bit
let modelConfiguration = ModelConfiguration.gemma_2_9b_it_4bit
/// parameters controlling the output
let generateParameters = GenerateParameters(temperature: 0.6)

View File

@@ -32,6 +32,7 @@ public enum ModelType: String, Codable {
case phi
case phi3
case gemma
case gemma2
case qwen2
case starcoder2
case cohere
@@ -55,6 +56,10 @@ public enum ModelType: String, Codable {
let configuration = try JSONDecoder().decode(
GemmaConfiguration.self, from: Data(contentsOf: configuration))
return GemmaModel(configuration)
case .gemma2:
let configuration = try JSONDecoder().decode(
Gemma2Configuration.self, from: Data(contentsOf: configuration))
return Gemma2Model(configuration)
case .qwen2:
let configuration = try JSONDecoder().decode(
Qwen2Configuration.self, from: Data(contentsOf: configuration))

View File

@@ -183,19 +183,10 @@ public func generate(
var start = Date.timeIntervalSinceReferenceDate
var promptTime: TimeInterval = 0
// build a set of additional stop tokens
let additionalEOSTokenIds = Set(
(extraEOSTokens ?? [])
.map {
tokenizer.encode(text: $0)
}
.filter {
// discard anything that is not a single token. sometimes
// the tokenizer will insert a <s> token, so accept that too
$0.count == 1 || ($0.count == 2 && $0[0] == 1)
}
.map {
$0.last!
.compactMap {
tokenizer.convertTokenToId($0)
})
var tokens = [Int]()

309
Libraries/LLM/Gemma2.swift Normal file
View File

@@ -0,0 +1,309 @@
// Copyright © 2024 Apple Inc.
import Foundation
import MLX
import MLXFast
import MLXNN
// Port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/gemma2.py
// specialized norm for gemma
private class RMSNorm: Module, UnaryLayer {
let weight: MLXArray
let eps: Float
public init(dimensions: Int, eps: Float = 1e-5) {
self.weight = MLXArray.ones([dimensions])
self.eps = eps
super.init()
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
return MLXFast.rmsNorm(x, weight: 1.0 + self.weight, eps: self.eps)
}
}
private class Attention: Module {
let args: Gemma2Configuration
let scale: Float
let logitSoftCap: Float
let headDim: Int
@ModuleInfo(key: "q_proj") var wq: Linear
@ModuleInfo(key: "k_proj") var wk: Linear
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "o_proj") var wo: Linear
let rope: RoPE
public init(_ args: Gemma2Configuration) {
self.args = args
let dim = args.hiddenSize
let heads = args.attentionHeads
let kvHeads = args.kvHeads
let headDim = args.headDimensions
self.headDim = headDim
self.scale = pow(Float(args.queryPreAttnScalar), -0.5)
self.logitSoftCap = args.attnLogitSoftcapping
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
self.rope = RoPE(
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
var queries = wq(x)
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
if let (keyCache, valueCache) = cache {
queries = rope(queries, offset: keyCache.dim(2))
keys = rope(keys, offset: keyCache.dim(2))
keys = concatenated([keyCache, keys], axis: 2)
values = concatenated([valueCache, values], axis: 2)
} else {
queries = rope(queries)
keys = rope(keys)
}
let newCache = (keys, values)
let repeats = self.args.attentionHeads / self.args.kvHeads
if repeats > 1 {
queries = queries.reshaped(
[B, self.args.kvHeads, repeats, L, self.headDim]
)
keys = expandedDimensions(keys, axes: [2])
values = expandedDimensions(values, axes: [2])
}
var scores = matmul(queries, keys.swappedAxes(-1, -2))
scores = tanh(scores / self.logitSoftCap) * self.logitSoftCap
if mask != nil {
scores = scores + mask!
}
scores = softmax(scores, axis: -1, precise: true)
var output = matmul(scores, values)
if repeats > 1 {
output = output.reshaped([B, self.args.attentionHeads, L, self.headDim])
}
output = output.transposed(0, 2, 1, 3).reshaped(B, L, -1)
return (wo(output), newCache)
}
}
private class MLP: Module, UnaryLayer {
@ModuleInfo(key: "gate_proj") var gate: Linear
@ModuleInfo(key: "down_proj") var down: Linear
@ModuleInfo(key: "up_proj") var up: Linear
public init(dimensions: Int, hiddenDimensions: Int) {
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
down(gelu(gate(x)) * up(x))
}
}
// Minimal changes from Gemma TransformerBlock
private class TransformerBlock: Module {
@ModuleInfo(key: "self_attn") var attention: Attention
let mlp: MLP
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
@ModuleInfo(key: "pre_feedforward_layernorm") var preFeedforwardLayerNorm: RMSNorm
@ModuleInfo(key: "post_feedforward_layernorm") var postFeedforwardLayerNorm: RMSNorm
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
public init(_ args: Gemma2Configuration) {
self._attention.wrappedValue = Attention(args)
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
self._inputLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._preFeedforwardLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._postFeedforwardLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
let h = x + postAttentionLayerNorm(r)
r = mlp(preFeedforwardLayerNorm(h))
let out = h + postFeedforwardLayerNorm(r)
return (out, cache)
}
}
// Uses Gemma2TransformerBlock, otherwise same as GemmaModelInner
public class ModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
fileprivate let layers: [TransformerBlock]
fileprivate let norm: RMSNorm
let hiddenScale: Float
public init(_ args: Gemma2Configuration) {
precondition(args.vocabularySize > 0)
self._embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.hiddenScale = pow(Float(args.hiddenSize), 0.5)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
TransformerBlock(args)
}
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var h = embedTokens(inputs)
h = h * hiddenScale
var mask: MLXArray? = nil
if h.dim(1) > 1 {
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
mask = mask?.asType(h.dtype)
}
var newCache = [(MLXArray, MLXArray)]()
for (i, layer) in layers.enumerated() {
var cacheUpdate: (MLXArray, MLXArray)
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
newCache.append(cacheUpdate)
}
return (norm(h), newCache)
}
}
// Uses Gemma2ModelInner, otherwise same as GemmaModel
public class Gemma2Model: Module, LLMModel {
public let vocabularySize: Int
let model: ModelInner
let logitSoftCap: Float
public init(_ args: Gemma2Configuration) {
self.vocabularySize = args.vocabularySize
self.model = ModelInner(args)
self.logitSoftCap = args.finalLogitSoftcapping
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var (out, cache) = model(inputs, cache: cache)
out = model.embedTokens.asLinear(out)
out = tanh(out / self.logitSoftCap) * self.logitSoftCap
return (out, cache)
}
}
public struct Gemma2Configuration: Codable {
var hiddenSize: Int
var hiddenLayers: Int
var intermediateSize: Int
var attentionHeads: Int
var headDimensions: Int
var rmsNormEps: Float
var vocabularySize: Int
var kvHeads: Int
var ropeTheta: Float = 10_000
var ropeTraditional: Bool = false
var attnLogitSoftcapping: Float = 50.0
var finalLogitSoftcapping: Float = 30.0
var queryPreAttnScalar: Int = 256
enum CodingKeys: String, CodingKey {
case hiddenSize = "hidden_size"
case hiddenLayers = "num_hidden_layers"
case intermediateSize = "intermediate_size"
case attentionHeads = "num_attention_heads"
case headDimensions = "head_dim"
case rmsNormEps = "rms_norm_eps"
case vocabularySize = "vocab_size"
case kvHeads = "num_key_value_heads"
case ropeTheta = "rope_theta"
case ropeTraditional = "rope_traditional"
case attnLogitSoftcapping = "attn_logit_softcapping"
case finalLogitSoftcapping = "final_logit_softcapping"
case queryPreAttnScalar = "query_pre_attn_scalar"
}
public init(from decoder: Decoder) throws {
// custom implementation to handle optional keys with required values
let container: KeyedDecodingContainer<CodingKeys> = try decoder.container(
keyedBy: CodingKeys.self)
self.hiddenSize = try container.decode(
Int.self, forKey: CodingKeys.hiddenSize)
self.hiddenLayers = try container.decode(
Int.self, forKey: CodingKeys.hiddenLayers)
self.intermediateSize = try container.decode(
Int.self, forKey: CodingKeys.intermediateSize)
self.attentionHeads = try container.decode(
Int.self, forKey: CodingKeys.attentionHeads)
self.headDimensions = try container.decode(
Int.self, forKey: CodingKeys.headDimensions)
self.rmsNormEps = try container.decode(
Float.self, forKey: CodingKeys.rmsNormEps)
self.vocabularySize = try container.decode(
Int.self, forKey: CodingKeys.vocabularySize)
self.kvHeads = try container.decode(Int.self, forKey: CodingKeys.kvHeads)
self.ropeTheta =
try container.decodeIfPresent(Float.self, forKey: CodingKeys.ropeTheta)
?? 10_000
self.ropeTraditional =
try container.decodeIfPresent(
Bool.self, forKey: CodingKeys.ropeTraditional) ?? false
self.attnLogitSoftcapping = try container.decode(
Float.self, forKey: CodingKeys.attnLogitSoftcapping)
self.finalLogitSoftcapping = try container.decode(
Float.self, forKey: CodingKeys.finalLogitSoftcapping)
self.queryPreAttnScalar = try container.decode(
Int.self, forKey: CodingKeys.queryPreAttnScalar)
}
}
// MARK: - LoRA
extension Gemma2Model: LoRAModel {
public func loraLinearLayers() -> LoRALinearLayers {
model.layers.map { ($0.attention, ["q_proj", "v_proj"]) }
}
}

View File

@@ -7,6 +7,86 @@ import MLXNN
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
func computeBaseFrequency(
base: Float, dims: Int, ropeType: String, ropeScaling: [String: StringOrNumber]?
)
-> Float
{
if ropeType != "llama3" {
return base
}
guard let ropeScaling = ropeScaling else {
return base
}
guard case .float(let factor) = ropeScaling["factor"],
case .float(let lowFreqFactor) = ropeScaling["low_freq_factor"] ?? .float(1.0),
case .float(let highFreqFactor) = ropeScaling["high_freq_factor"] ?? .float(4.0),
case .float(let oldContextLen) = ropeScaling["original_max_position_embeddings"]
?? .float(8192)
else {
return base
}
let lowFreqWavelen = oldContextLen / lowFreqFactor
let highFreqWavelen = oldContextLen / highFreqFactor
let freqs = (0 ..< dims).compactMap { index -> Float? in
if index % 2 == 0 {
return pow(base, Float(index) / Float(dims))
}
return nil
}
let newBaseFreqs = freqs.map { freq -> Float in
let wavelen = 2 * .pi / freq
let smooth = max(
0, min(1, (wavelen - highFreqWavelen) / (lowFreqWavelen - highFreqWavelen)))
return freq * ((1 - smooth) * factor + smooth)
}
return newBaseFreqs.reduce(0, +) / Float(newBaseFreqs.count)
}
private class DynamicNTKScalingRoPE: Module {
let dims: Int
let maxPositionEmbeddings: Int?
let traditional: Bool
let base: Float
var scale: Float
let ropeType: String
let ropeScaling: [String: StringOrNumber]?
init(
dims: Int, maxPositionEmbeddings: Int?, traditional: Bool = false,
base: Float = 10000, scale: Float = 1.0, ropeType: String = "default",
ropeScaling: [String: StringOrNumber]? = nil
) {
self.dims = dims
self.maxPositionEmbeddings = maxPositionEmbeddings
self.traditional = traditional
self.base = computeBaseFrequency(
base: base, dims: dims, ropeType: ropeType, ropeScaling: ropeScaling)
self.scale = scale
self.ropeType = ropeType
self.ropeScaling = ropeScaling
}
func callAsFunction(_ x: MLXArray, offset: Int = 0) -> MLXArray {
let seqLen = x.dim(1) + offset
var base = self.base
if let maxPositionEmbeddings, seqLen > maxPositionEmbeddings {
let factorAdjustment = Float(seqLen) / Float(maxPositionEmbeddings) - 1
let dimensionRatio = Float(dims) / Float(Float(dims) - 2)
let adjustedScale = scale * pow(1 + factorAdjustment, dimensionRatio)
base *= adjustedScale
}
return MLXFast.RoPE(
x, dimensions: dims, traditional: traditional, base: base, scale: scale, offset: offset)
}
}
private class Attention: Module {
let args: LlamaConfiguration
@@ -17,43 +97,40 @@ private class Attention: Module {
@ModuleInfo(key: "v_proj") var wv: Linear
@ModuleInfo(key: "o_proj") var wo: Linear
let rope: RoPE
let rope: DynamicNTKScalingRoPE
public init(_ args: LlamaConfiguration) {
init(_ args: LlamaConfiguration) {
self.args = args
let dim = args.hiddenSize
let heads = args.attentionHeads
let kvHeads = args.kvHeads
let headDim = args.hiddenSize / heads
let headDim = args.headDimensions ?? (args.hiddenSize / heads)
self.scale = pow(Float(headDim), -0.5)
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: args.attentionBias)
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: args.attentionBias)
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: args.attentionBias)
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: args.attentionBias)
let ropeScale: Float
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
let factor = ropeScaling["factor"]
{
switch factor {
case .string:
fatalError("ropeScaling.factor must be a float")
case .float(let v):
ropeScale = 1 / v
}
} else {
ropeScale = 1
}
self.rope = RoPE(
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
scale: ropeScale)
self.rope = DynamicNTKScalingRoPE(
dims: headDim,
maxPositionEmbeddings: args.maxPositionEmbeddings,
traditional: args.ropeTraditional,
base: args.ropeTheta,
scale: 1.0,
ropeType: {
if case .string(let value) = args.ropeScaling?["type"] {
return value
} else {
return "default"
}
}(),
ropeScaling: args.ropeScaling)
}
public func callAsFunction(
func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
let (B, L) = (x.dim(0), x.dim(1))
@@ -62,7 +139,7 @@ private class Attention: Module {
var keys = wk(x)
var values = wv(x)
// prepare the queries, keys and values for the attention computation
// Prepare the queries, keys and values for the attention computation
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
@@ -93,35 +170,35 @@ private class MLP: Module, UnaryLayer {
@ModuleInfo(key: "down_proj") var down: Linear
@ModuleInfo(key: "up_proj") var up: Linear
public init(dimensions: Int, hiddenDimensions: Int) {
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
init(_ args: LlamaConfiguration) {
self._gate.wrappedValue = Linear(args.hiddenSize, args.intermediateSize, bias: args.mlpBias)
self._down.wrappedValue = Linear(args.intermediateSize, args.hiddenSize, bias: args.mlpBias)
self._up.wrappedValue = Linear(args.hiddenSize, args.intermediateSize, bias: args.mlpBias)
}
public func callAsFunction(_ x: MLXArray) -> MLXArray {
down(silu(gate(x)) * up(x))
func callAsFunction(_ x: MLXArray) -> MLXArray {
let activation = silu(gate(x))
return down(activation * up(x))
}
}
private class TransformerBlock: Module {
@ModuleInfo(key: "self_attn") var attention: Attention
let mlp: MLP
@ModuleInfo(key: "mlp") var mlp: MLP
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
public init(_ args: LlamaConfiguration) {
init(_ args: LlamaConfiguration) {
self._attention.wrappedValue = Attention(args)
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
self._mlp.wrappedValue = MLP(args)
self._inputLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(
func callAsFunction(
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
) -> (MLXArray, (MLXArray, MLXArray)) {
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
@@ -132,27 +209,24 @@ private class TransformerBlock: Module {
}
}
public class LlamaModelInner: Module {
private class LlamaModelInner: Module {
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
fileprivate let layers: [TransformerBlock]
let layers: [TransformerBlock]
let norm: RMSNorm
public init(_ args: LlamaConfiguration) {
init(_ args: LlamaConfiguration) {
precondition(args.vocabularySize > 0)
self._embedTokens.wrappedValue = Embedding(
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
self.layers = (0 ..< args.hiddenLayers)
.map { _ in
TransformerBlock(args)
}
self.layers = (0 ..< args.hiddenLayers).map { _ in TransformerBlock(args) }
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
var h = embedTokens(inputs)
@@ -178,25 +252,31 @@ public class LlamaModelInner: Module {
public class LlamaModel: Module, LLMModel {
public let vocabularySize: Int
let model: LlamaModelInner
fileprivate let model: LlamaModelInner
@ModuleInfo(key: "lm_head") var lmHead: Linear
@ModuleInfo(key: "lm_head") var lmHead: Linear?
public init(_ args: LlamaConfiguration) {
self.vocabularySize = args.vocabularySize
self.model = LlamaModelInner(args)
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
if !args.tieWordEmbeddings {
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
}
}
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
MLXArray, [(MLXArray, MLXArray)]
) {
let (out, cache) = model(inputs, cache: cache)
return (lmHead(out), cache)
if let lmHead {
return (lmHead(out), cache)
} else {
return (model.embedTokens.asLinear(out), cache)
}
}
public func sanitize(weights: [String: MLXArray]) -> [String: MLXArray] {
// Remove unused precomputed rotary freqs
// Remove unused precomputed rotary frequencies
weights.filter {
!$0.key.contains("self_attn.rotary_emb.inv_freq")
}
@@ -209,55 +289,96 @@ public struct LlamaConfiguration: Codable {
var hiddenLayers: Int
var intermediateSize: Int
var attentionHeads: Int
var headDimensions: Int?
var rmsNormEps: Float
var vocabularySize: Int
var kvHeads: Int
var maxPositionEmbeddings: Int?
var ropeTheta: Float = 10_000
var ropeTraditional: Bool = false
var ropeScaling: [String: StringOrNumber]? = nil
var ropeScaling: [String: StringOrNumber]?
var tieWordEmbeddings: Bool = true
var attentionBias: Bool = false
var mlpBias: Bool = false
enum CodingKeys: String, CodingKey {
case hiddenSize = "hidden_size"
case hiddenLayers = "num_hidden_layers"
case intermediateSize = "intermediate_size"
case attentionHeads = "num_attention_heads"
case headDimensions = "head_dim"
case rmsNormEps = "rms_norm_eps"
case vocabularySize = "vocab_size"
case kvHeads = "num_key_value_heads"
case maxPositionEmbeddings = "max_position_embeddings"
case ropeTheta = "rope_theta"
case ropeTraditional = "rope_traditional"
case ropeScaling = "rope_scaling"
case tieWordEmbeddings = "tie_word_embeddings"
case attentionBias = "attention_bias"
case mlpBias = "mlp_bias"
}
public init(from decoder: Decoder) throws {
// custom implementation to handle optional keys with required values
let container: KeyedDecodingContainer<LlamaConfiguration.CodingKeys> =
try decoder.container(
keyedBy: LlamaConfiguration.CodingKeys.self)
let container = try decoder.container(keyedBy: CodingKeys.self)
self.hiddenSize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenSize)
self.hiddenLayers = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenLayers)
self.intermediateSize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.intermediateSize)
self.attentionHeads = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.attentionHeads)
self.rmsNormEps = try container.decode(
Float.self, forKey: LlamaConfiguration.CodingKeys.rmsNormEps)
self.vocabularySize = try container.decode(
Int.self, forKey: LlamaConfiguration.CodingKeys.vocabularySize)
self.kvHeads = try container.decode(Int.self, forKey: LlamaConfiguration.CodingKeys.kvHeads)
self.ropeTheta =
try container.decodeIfPresent(
Float.self, forKey: LlamaConfiguration.CodingKeys.ropeTheta)
?? 10_000
self.ropeTraditional =
try container.decodeIfPresent(
Bool.self, forKey: LlamaConfiguration.CodingKeys.ropeTraditional) ?? false
self.ropeScaling = try container.decodeIfPresent(
[String: StringOrNumber].self, forKey: LlamaConfiguration.CodingKeys.ropeScaling)
hiddenSize = try container.decode(Int.self, forKey: .hiddenSize)
hiddenLayers = try container.decode(Int.self, forKey: .hiddenLayers)
intermediateSize = try container.decode(Int.self, forKey: .intermediateSize)
attentionHeads = try container.decode(Int.self, forKey: .attentionHeads)
headDimensions = try container.decodeIfPresent(Int.self, forKey: .headDimensions)
rmsNormEps = try container.decode(Float.self, forKey: .rmsNormEps)
vocabularySize = try container.decode(Int.self, forKey: .vocabularySize)
kvHeads = try container.decodeIfPresent(Int.self, forKey: .kvHeads) ?? attentionHeads
maxPositionEmbeddings = try container.decodeIfPresent(
Int.self, forKey: .maxPositionEmbeddings)
if let ropeTheta = try container.decodeIfPresent(Float.self, forKey: .ropeTheta) {
self.ropeTheta = ropeTheta
}
if let ropeTraditional = try container.decodeIfPresent(Bool.self, forKey: .ropeTraditional)
{
self.ropeTraditional = ropeTraditional
}
ropeScaling = try container.decodeIfPresent(
[String: StringOrNumber].self, forKey: .ropeScaling)
if let tieWordEmbeddings = try container.decodeIfPresent(
Bool.self, forKey: .tieWordEmbeddings)
{
self.tieWordEmbeddings = tieWordEmbeddings
}
if let attentionBias = try container.decodeIfPresent(Bool.self, forKey: .attentionBias) {
self.attentionBias = attentionBias
}
if let mlpBias = try container.decodeIfPresent(Bool.self, forKey: .mlpBias) {
self.mlpBias = mlpBias
}
if let ropeScaling {
if ropeScaling["factor"] == nil {
throw DecodingError.dataCorruptedError(
forKey: .ropeScaling, in: container,
debugDescription: "rope_scaling must contain 'factor'")
}
if let ropeType = ropeScaling["type"] ?? ropeScaling["rope_type"] {
if case .string = ropeType {
let options = [
StringOrNumber.string("linear"), StringOrNumber.string("dynamic"),
StringOrNumber.string("llama3"),
]
if !options.contains(ropeType) {
throw DecodingError.dataCorruptedError(
forKey: .ropeScaling, in: container,
debugDescription:
"rope_scaling 'type' currently only supports 'linear', 'dynamic', or 'llama3'"
)
}
}
} else {
throw DecodingError.dataCorruptedError(
forKey: .ropeScaling, in: container,
debugDescription: "rope_scaling must contain either 'type' or 'rope_type'")
}
}
}
}

View File

@@ -110,13 +110,27 @@ public struct ModelConfiguration {
}
extension ModelConfiguration {
public static let smolLM_135M_4bit = ModelConfiguration(
id: "mlx-community/SmolLM-135M-Instruct-4bit",
defaultPrompt: "Tell me about the history of Spain."
) {
prompt in
"<|im_start|>user\n\(prompt)<|im_end|>\n<|im_start|>assistant\n"
}
public static let mistralNeMo4bit = ModelConfiguration(
id: "mlx-community/Mistral-Nemo-Instruct-2407-4bit",
defaultPrompt: "Explain quaternions."
) { prompt in
"<s>[INST] \(prompt) [/INST] "
}
public static let mistral7B4bit = ModelConfiguration(
id: "mlx-community/Mistral-7B-v0.1-hf-4bit-mlx",
// https://www.promptingguide.ai/models/mistral-7b
defaultPrompt: "describe the swift language"
)
id: "mlx-community/Mistral-7B-Instruct-v0.3-4bit",
defaultPrompt: "Describe the Swift language."
) { prompt in
"<s>[INST] \(prompt) [/INST] "
}
public static let codeLlama13b4bit = ModelConfiguration(
id: "mlx-community/CodeLlama-13b-Instruct-hf-4bit-MLX",
@@ -137,7 +151,7 @@ extension ModelConfiguration {
defaultPrompt: "Why is the sky blue?"
)
public static let phi34bit = ModelConfiguration(
public static let phi3_4bit = ModelConfiguration(
id: "mlx-community/Phi-3-mini-4k-instruct-4bit-no-q-embed",
defaultPrompt: "what is the gravity on mars and the moon?",
extraEOSTokens: ["<|end|>"]
@@ -153,6 +167,28 @@ extension ModelConfiguration {
// https://www.promptingguide.ai/models/gemma
defaultPrompt: "what is the difference between lettuce and cabbage?"
) { prompt in
"<start_of_turn>user\n\(prompt)<end_of_turn>\n<start_of_turn>model\n"
}
public static let gemma_2_9b_it_4bit = ModelConfiguration(
id: "mlx-community/gemma-2-9b-it-4bit",
overrideTokenizer: "PreTrainedTokenizer",
// https://www.promptingguide.ai/models/gemma
defaultPrompt: "What is the difference between lettuce and cabbage?"
) { prompt in
"<start_of_turn>user\n\(prompt)<end_of_turn>\n<start_of_turn>model\n"
}
public static let gemma_2_2b_it_4bit = ModelConfiguration(
id: "mlx-community/gemma-2-2b-it-4bit",
overrideTokenizer: "PreTrainedTokenizer",
// https://www.promptingguide.ai/models/gemma
defaultPrompt: "What is the difference between lettuce and cabbage?"
) { prompt in
"<start_of_turn>user \(prompt)<end_of_turn><start_of_turn>model"
}
@@ -174,9 +210,17 @@ extension ModelConfiguration {
"\(prompt)"
}
public static let llama38B4bit = ModelConfiguration(
public static let llama3_1_8B_4bit = ModelConfiguration(
id: "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit",
defaultPrompt: "What is the difference between a fruit and a vegetable?"
) {
prompt in
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\nYou are a helpful assistant<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\(prompt)<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
}
public static let llama3_8B_4bit = ModelConfiguration(
id: "mlx-community/Meta-Llama-3-8B-Instruct-4bit",
defaultPrompt: "what is the difference between a fruit and a vegetable?"
defaultPrompt: "What is the difference between a fruit and a vegetable?"
) {
prompt in
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\nYou are a helpful assistant<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\(prompt)<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
@@ -195,11 +239,15 @@ extension ModelConfiguration {
case .idle:
bootstrapState = .bootstrapping
register(configurations: [
llama3_1_8B_4bit,
mistralNeMo4bit,
smolLM_135M_4bit,
mistral7B4bit,
codeLlama13b4bit,
phi4bit,
phi34bit,
phi3_4bit,
gemma2bQuantized,
gemma_2_9b_it_4bit,
qwen205b4bit,
openelm270m4bit,
])

View File

@@ -15,9 +15,9 @@ let package = Package(
targets: ["MLXMNIST"]),
],
dependencies: [
.package(url: "https://github.com/ml-explore/mlx-swift", branch: "main"),
.package(url: "https://github.com/huggingface/swift-transformers", from: "0.1.5"),
.package(url: "https://github.com/1024jp/GzipSwift", from: "6.0.1"),
.package(url: "https://github.com/ml-explore/mlx-swift", from: "0.12.1"),
.package(url: "https://github.com/huggingface/swift-transformers", from: "0.1.8"),
.package(url: "https://github.com/1024jp/GzipSwift", "6.0.1" ... "6.0.1"),
.package(url: "https://github.com/apple/swift-async-algorithms", from: "1.0.0"),
],
targets: [

View File

@@ -8,6 +8,7 @@
/* Begin PBXBuildFile section */
12305EAF2B9D864400C92FEE /* PredictionView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 12305EAE2B9D864400C92FEE /* PredictionView.swift */; };
1C55317A2C5AAB4E00B07ECD /* Gemma2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 1C5531792C5AAB4E00B07ECD /* Gemma2.swift */; };
1CD79C702BD80DE100B6C06F /* Phi3.swift in Sources */ = {isa = PBXBuildFile; fileRef = 1CD79C6F2BD80DE100B6C06F /* Phi3.swift */; };
525C1E9D2B9A011000B5C356 /* Starcoder2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 525C1E9C2B9A010F00B5C356 /* Starcoder2.swift */; };
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 52A776172B94B5EE00AA6E80 /* Qwen2.swift */; };
@@ -218,6 +219,7 @@
/* Begin PBXFileReference section */
12305EAE2B9D864400C92FEE /* PredictionView.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = PredictionView.swift; sourceTree = "<group>"; };
1C5531792C5AAB4E00B07ECD /* Gemma2.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Gemma2.swift; sourceTree = "<group>"; };
1CD79C6F2BD80DE100B6C06F /* Phi3.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Phi3.swift; sourceTree = "<group>"; };
525C1E9C2B9A010F00B5C356 /* Starcoder2.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Starcoder2.swift; sourceTree = "<group>"; };
52A776172B94B5EE00AA6E80 /* Qwen2.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = Qwen2.swift; sourceTree = "<group>"; };
@@ -480,6 +482,7 @@
C3A8B3AB2B9283150002EFB8 /* Models.swift */,
C34E48EE2B696E6500FCB841 /* Llama.swift */,
C38935E22B86C0FE0037B833 /* Gemma.swift */,
1C5531792C5AAB4E00B07ECD /* Gemma2.swift */,
C38935C72B869C7A0037B833 /* LLM.h */,
C38935E02B869F420037B833 /* LLMModel.swift */,
C38935DE2B869DD00037B833 /* Phi.swift */,
@@ -1014,6 +1017,7 @@
C38935CE2B869C870037B833 /* Load.swift in Sources */,
C3E786AD2B8D4AF50004D037 /* Tokenizer.swift in Sources */,
C3A8B3AC2B9283150002EFB8 /* Models.swift in Sources */,
1C55317A2C5AAB4E00B07ECD /* Gemma2.swift in Sources */,
C3E786AB2B8D1AEC0004D037 /* Evaluate.swift in Sources */,
C38935CC2B869C870037B833 /* Llama.swift in Sources */,
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */,
@@ -1130,7 +1134,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_ASSET_PATHS = "\"Applications/LoRATrainingExample/Preview Content\"";
DEVELOPMENT_TEAM = "";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
@@ -1168,7 +1172,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LoRATrainingExample;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LoRATrainingExample;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
@@ -1222,7 +1226,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_ASSET_PATHS = "\"Applications/LoRATrainingExample/Preview Content\"";
DEVELOPMENT_TEAM = "";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
@@ -1254,7 +1258,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LoRATrainingExample;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LoRATrainingExample;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
@@ -1302,6 +1306,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -1367,6 +1372,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -1422,12 +1428,14 @@
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
COMBINE_HIDPI_IMAGES = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
DEFINES_MODULE = YES;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
@@ -1465,7 +1473,7 @@
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNIST;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNIST;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SDKROOT = macosx;
SKIP_INSTALL = YES;
@@ -1514,12 +1522,14 @@
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
COMBINE_HIDPI_IMAGES = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEFINES_MODULE = YES;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
@@ -1551,7 +1561,7 @@
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNIST;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNIST;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SDKROOT = macosx;
SKIP_INSTALL = YES;
@@ -1602,6 +1612,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -1667,6 +1678,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -1722,11 +1734,13 @@
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
DEFINES_MODULE = YES;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
@@ -1767,7 +1781,7 @@
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLM;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LLM;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SDKROOT = auto;
SKIP_INSTALL = YES;
@@ -1815,11 +1829,13 @@
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEFINES_MODULE = YES;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
@@ -1854,7 +1870,7 @@
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLM;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LLM;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SDKROOT = auto;
SKIP_INSTALL = YES;
@@ -1922,6 +1938,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -1988,6 +2005,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -2046,6 +2064,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -2111,6 +2130,7 @@
CODE_SIGN_STYLE = Automatic;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
@@ -2174,6 +2194,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_ASSET_PATHS = "\"Applications/MNISTTrainer/Preview Content\"";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
@@ -2212,7 +2233,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNISTTrainer;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNISTTrainer;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx";
@@ -2265,6 +2286,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_ASSET_PATHS = "\"Applications/MNISTTrainer/Preview Content\"";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
@@ -2297,7 +2319,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNISTTrainer;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNISTTrainer;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx";
@@ -2349,7 +2371,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
DEVELOPMENT_ASSET_PATHS = "\"Applications/LLMEval/Preview Content\"";
DEVELOPMENT_TEAM = "";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
@@ -2379,7 +2401,7 @@
"INFOPLIST_KEY_UIStatusBarStyle[sdk=iphonesimulator*]" = UIStatusBarStyleDefault;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 17.2;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LD_RUNPATH_SEARCH_PATHS = "@executable_path/Frameworks";
"LD_RUNPATH_SEARCH_PATHS[sdk=macosx*]" = "@executable_path/../Frameworks";
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
@@ -2387,7 +2409,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLMEval;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.LLMEval;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
@@ -2440,7 +2462,7 @@
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
DEVELOPMENT_ASSET_PATHS = "\"Applications/LLMEval/Preview Content\"";
DEVELOPMENT_TEAM = "";
DEVELOPMENT_TEAM = GZPQ4W3XF5;
ENABLE_NS_ASSERTIONS = NO;
ENABLE_PREVIEWS = YES;
ENABLE_STRICT_OBJC_MSGSEND = YES;
@@ -2464,7 +2486,7 @@
"INFOPLIST_KEY_UIStatusBarStyle[sdk=iphonesimulator*]" = UIStatusBarStyleDefault;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 17.2;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LD_RUNPATH_SEARCH_PATHS = "@executable_path/Frameworks";
"LD_RUNPATH_SEARCH_PATHS[sdk=macosx*]" = "@executable_path/../Frameworks";
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
@@ -2472,7 +2494,7 @@
MARKETING_VERSION = 1.0;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLMEval;
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.LLMEval;
PRODUCT_NAME = "$(TARGET_NAME)";
SDKROOT = auto;
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
@@ -2591,8 +2613,8 @@
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/1024jp/GzipSwift";
requirement = {
kind = upToNextMajorVersion;
minimumVersion = 6.0.1;
kind = exactVersion;
version = 6.0.1;
};
};
C382DE882B630889000F8F03 /* XCRemoteSwiftPackageReference "swift-async-algorithms" */ = {
@@ -2607,8 +2629,8 @@
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/huggingface/swift-transformers";
requirement = {
branch = main;
kind = branch;
kind = upToNextMajorVersion;
minimumVersion = 0.1.8;
};
};
C392736E2B60699100368D5D /* XCRemoteSwiftPackageReference "swift-argument-parser" */ = {
@@ -2623,8 +2645,8 @@
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/ml-explore/mlx-swift";
requirement = {
branch = main;
kind = branch;
kind = upToNextMajorVersion;
minimumVersion = 0.12.1;
};
};
/* End XCRemoteSwiftPackageReference section */

View File

@@ -15,8 +15,8 @@
"kind" : "remoteSourceControl",
"location" : "https://github.com/ml-explore/mlx-swift",
"state" : {
"branch" : "main",
"revision" : "d6d9472da5bf7ec2654e8914bd1d15622f45b6a9"
"revision" : "36d63a1fc386a551df14f5b67df1756dc17d2ebc",
"version" : "0.12.1"
}
},
{
@@ -78,8 +78,8 @@
"kind" : "remoteSourceControl",
"location" : "https://github.com/huggingface/swift-transformers",
"state" : {
"branch" : "main",
"revision" : "fc6543263e4caed9bf6107466d625cfae9357f08"
"revision" : "fc6543263e4caed9bf6107466d625cfae9357f08",
"version" : "0.1.8"
}
}
],

View File

@@ -31,8 +31,8 @@
</TestAction>
<LaunchAction
buildConfiguration = "Release"
selectedDebuggerIdentifier = "Xcode.DebuggerFoundation.Debugger.LLDB"
selectedLauncherIdentifier = "Xcode.DebuggerFoundation.Launcher.LLDB"
selectedDebuggerIdentifier = ""
selectedLauncherIdentifier = "Xcode.IDEFoundation.Launcher.PosixSpawn"
launchStyle = "0"
useCustomWorkingDirectory = "NO"
ignoresPersistentStateOnLaunch = "NO"

View File

@@ -31,8 +31,8 @@
</TestAction>
<LaunchAction
buildConfiguration = "Release"
selectedDebuggerIdentifier = "Xcode.DebuggerFoundation.Debugger.LLDB"
selectedLauncherIdentifier = "Xcode.DebuggerFoundation.Launcher.LLDB"
selectedDebuggerIdentifier = ""
selectedLauncherIdentifier = "Xcode.IDEFoundation.Launcher.PosixSpawn"
launchStyle = "0"
useCustomWorkingDirectory = "NO"
ignoresPersistentStateOnLaunch = "NO"