Compare commits
10 Commits
9d74afd119
...
747fd64ce0
| Author | SHA1 | Date | |
|---|---|---|---|
| 747fd64ce0 | |||
| b1fbb95f17 | |||
|
|
885e520ecd | ||
|
|
ac6bdfccec | ||
|
|
c4fda0e036 | ||
|
|
a2e8d7e469 | ||
|
|
2a2931ba8d | ||
|
|
0c08f3a7e4 | ||
|
|
7957378077 | ||
|
|
61c0703c91 |
@@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/slessans/pre-commit-swift-format
|
||||
rev: ""
|
||||
rev: "fd627de92bdf84a75c924ed95691336d14e94cf1"
|
||||
hooks:
|
||||
- id: swift-format
|
||||
args: ["--configuration", ".swift-format"]
|
||||
|
||||
@@ -159,7 +159,7 @@ class LLMEvaluator {
|
||||
|
||||
/// this controls which model loads -- phi4bit is one of the smaller ones so this will fit on
|
||||
/// more devices
|
||||
let modelConfiguration = ModelConfiguration.phi34bit
|
||||
let modelConfiguration = ModelConfiguration.gemma_2_9b_it_4bit
|
||||
|
||||
/// parameters controlling the output
|
||||
let generateParameters = GenerateParameters(temperature: 0.6)
|
||||
|
||||
@@ -32,6 +32,7 @@ public enum ModelType: String, Codable {
|
||||
case phi
|
||||
case phi3
|
||||
case gemma
|
||||
case gemma2
|
||||
case qwen2
|
||||
case starcoder2
|
||||
case cohere
|
||||
@@ -55,6 +56,10 @@ public enum ModelType: String, Codable {
|
||||
let configuration = try JSONDecoder().decode(
|
||||
GemmaConfiguration.self, from: Data(contentsOf: configuration))
|
||||
return GemmaModel(configuration)
|
||||
case .gemma2:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
Gemma2Configuration.self, from: Data(contentsOf: configuration))
|
||||
return Gemma2Model(configuration)
|
||||
case .qwen2:
|
||||
let configuration = try JSONDecoder().decode(
|
||||
Qwen2Configuration.self, from: Data(contentsOf: configuration))
|
||||
|
||||
@@ -183,19 +183,10 @@ public func generate(
|
||||
var start = Date.timeIntervalSinceReferenceDate
|
||||
var promptTime: TimeInterval = 0
|
||||
|
||||
// build a set of additional stop tokens
|
||||
let additionalEOSTokenIds = Set(
|
||||
(extraEOSTokens ?? [])
|
||||
.map {
|
||||
tokenizer.encode(text: $0)
|
||||
}
|
||||
.filter {
|
||||
// discard anything that is not a single token. sometimes
|
||||
// the tokenizer will insert a <s> token, so accept that too
|
||||
$0.count == 1 || ($0.count == 2 && $0[0] == 1)
|
||||
}
|
||||
.map {
|
||||
$0.last!
|
||||
.compactMap {
|
||||
tokenizer.convertTokenToId($0)
|
||||
})
|
||||
|
||||
var tokens = [Int]()
|
||||
|
||||
309
Libraries/LLM/Gemma2.swift
Normal file
309
Libraries/LLM/Gemma2.swift
Normal file
@@ -0,0 +1,309 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
import Foundation
|
||||
import MLX
|
||||
import MLXFast
|
||||
import MLXNN
|
||||
|
||||
// Port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/gemma2.py
|
||||
|
||||
// specialized norm for gemma
|
||||
private class RMSNorm: Module, UnaryLayer {
|
||||
let weight: MLXArray
|
||||
let eps: Float
|
||||
|
||||
public init(dimensions: Int, eps: Float = 1e-5) {
|
||||
self.weight = MLXArray.ones([dimensions])
|
||||
self.eps = eps
|
||||
super.init()
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
return MLXFast.rmsNorm(x, weight: 1.0 + self.weight, eps: self.eps)
|
||||
}
|
||||
}
|
||||
|
||||
private class Attention: Module {
|
||||
|
||||
let args: Gemma2Configuration
|
||||
let scale: Float
|
||||
let logitSoftCap: Float
|
||||
let headDim: Int
|
||||
|
||||
@ModuleInfo(key: "q_proj") var wq: Linear
|
||||
@ModuleInfo(key: "k_proj") var wk: Linear
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "o_proj") var wo: Linear
|
||||
|
||||
let rope: RoPE
|
||||
|
||||
public init(_ args: Gemma2Configuration) {
|
||||
self.args = args
|
||||
|
||||
let dim = args.hiddenSize
|
||||
let heads = args.attentionHeads
|
||||
let kvHeads = args.kvHeads
|
||||
|
||||
let headDim = args.headDimensions
|
||||
self.headDim = headDim
|
||||
self.scale = pow(Float(args.queryPreAttnScalar), -0.5)
|
||||
self.logitSoftCap = args.attnLogitSoftcapping
|
||||
|
||||
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
||||
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
|
||||
var queries = wq(x)
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
|
||||
if let (keyCache, valueCache) = cache {
|
||||
queries = rope(queries, offset: keyCache.dim(2))
|
||||
keys = rope(keys, offset: keyCache.dim(2))
|
||||
keys = concatenated([keyCache, keys], axis: 2)
|
||||
values = concatenated([valueCache, values], axis: 2)
|
||||
} else {
|
||||
queries = rope(queries)
|
||||
keys = rope(keys)
|
||||
}
|
||||
|
||||
let newCache = (keys, values)
|
||||
|
||||
let repeats = self.args.attentionHeads / self.args.kvHeads
|
||||
if repeats > 1 {
|
||||
queries = queries.reshaped(
|
||||
[B, self.args.kvHeads, repeats, L, self.headDim]
|
||||
)
|
||||
keys = expandedDimensions(keys, axes: [2])
|
||||
values = expandedDimensions(values, axes: [2])
|
||||
}
|
||||
|
||||
var scores = matmul(queries, keys.swappedAxes(-1, -2))
|
||||
scores = tanh(scores / self.logitSoftCap) * self.logitSoftCap
|
||||
|
||||
if mask != nil {
|
||||
scores = scores + mask!
|
||||
}
|
||||
scores = softmax(scores, axis: -1, precise: true)
|
||||
var output = matmul(scores, values)
|
||||
if repeats > 1 {
|
||||
output = output.reshaped([B, self.args.attentionHeads, L, self.headDim])
|
||||
}
|
||||
output = output.transposed(0, 2, 1, 3).reshaped(B, L, -1)
|
||||
return (wo(output), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
private class MLP: Module, UnaryLayer {
|
||||
|
||||
@ModuleInfo(key: "gate_proj") var gate: Linear
|
||||
@ModuleInfo(key: "down_proj") var down: Linear
|
||||
@ModuleInfo(key: "up_proj") var up: Linear
|
||||
|
||||
public init(dimensions: Int, hiddenDimensions: Int) {
|
||||
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
||||
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
down(gelu(gate(x)) * up(x))
|
||||
}
|
||||
}
|
||||
|
||||
// Minimal changes from Gemma TransformerBlock
|
||||
private class TransformerBlock: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "pre_feedforward_layernorm") var preFeedforwardLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_feedforward_layernorm") var postFeedforwardLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: Gemma2Configuration) {
|
||||
self._attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
self._inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._preFeedforwardLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postFeedforwardLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
let h = x + postAttentionLayerNorm(r)
|
||||
r = mlp(preFeedforwardLayerNorm(h))
|
||||
let out = h + postFeedforwardLayerNorm(r)
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
// Uses Gemma2TransformerBlock, otherwise same as GemmaModelInner
|
||||
public class ModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [TransformerBlock]
|
||||
fileprivate let norm: RMSNorm
|
||||
|
||||
let hiddenScale: Float
|
||||
|
||||
public init(_ args: Gemma2Configuration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.hiddenScale = pow(Float(args.hiddenSize), 0.5)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
TransformerBlock(args)
|
||||
}
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var h = embedTokens(inputs)
|
||||
h = h * hiddenScale
|
||||
|
||||
var mask: MLXArray? = nil
|
||||
if h.dim(1) > 1 {
|
||||
mask = MultiHeadAttention.createAdditiveCausalMask(h.dim(1))
|
||||
mask = mask?.asType(h.dtype)
|
||||
}
|
||||
|
||||
var newCache = [(MLXArray, MLXArray)]()
|
||||
|
||||
for (i, layer) in layers.enumerated() {
|
||||
var cacheUpdate: (MLXArray, MLXArray)
|
||||
(h, cacheUpdate) = layer(h, mask: mask, cache: cache?[i])
|
||||
newCache.append(cacheUpdate)
|
||||
}
|
||||
|
||||
return (norm(h), newCache)
|
||||
}
|
||||
}
|
||||
|
||||
// Uses Gemma2ModelInner, otherwise same as GemmaModel
|
||||
public class Gemma2Model: Module, LLMModel {
|
||||
|
||||
public let vocabularySize: Int
|
||||
let model: ModelInner
|
||||
let logitSoftCap: Float
|
||||
|
||||
public init(_ args: Gemma2Configuration) {
|
||||
self.vocabularySize = args.vocabularySize
|
||||
self.model = ModelInner(args)
|
||||
self.logitSoftCap = args.finalLogitSoftcapping
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var (out, cache) = model(inputs, cache: cache)
|
||||
out = model.embedTokens.asLinear(out)
|
||||
out = tanh(out / self.logitSoftCap) * self.logitSoftCap
|
||||
return (out, cache)
|
||||
}
|
||||
}
|
||||
|
||||
public struct Gemma2Configuration: Codable {
|
||||
|
||||
var hiddenSize: Int
|
||||
var hiddenLayers: Int
|
||||
var intermediateSize: Int
|
||||
var attentionHeads: Int
|
||||
var headDimensions: Int
|
||||
var rmsNormEps: Float
|
||||
var vocabularySize: Int
|
||||
var kvHeads: Int
|
||||
var ropeTheta: Float = 10_000
|
||||
var ropeTraditional: Bool = false
|
||||
var attnLogitSoftcapping: Float = 50.0
|
||||
var finalLogitSoftcapping: Float = 30.0
|
||||
var queryPreAttnScalar: Int = 256
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case hiddenSize = "hidden_size"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case headDimensions = "head_dim"
|
||||
case rmsNormEps = "rms_norm_eps"
|
||||
case vocabularySize = "vocab_size"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case ropeTheta = "rope_theta"
|
||||
case ropeTraditional = "rope_traditional"
|
||||
case attnLogitSoftcapping = "attn_logit_softcapping"
|
||||
case finalLogitSoftcapping = "final_logit_softcapping"
|
||||
case queryPreAttnScalar = "query_pre_attn_scalar"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
// custom implementation to handle optional keys with required values
|
||||
let container: KeyedDecodingContainer<CodingKeys> = try decoder.container(
|
||||
keyedBy: CodingKeys.self)
|
||||
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.hiddenSize)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: CodingKeys.hiddenLayers)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.intermediateSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: CodingKeys.attentionHeads)
|
||||
self.headDimensions = try container.decode(
|
||||
Int.self, forKey: CodingKeys.headDimensions)
|
||||
self.rmsNormEps = try container.decode(
|
||||
Float.self, forKey: CodingKeys.rmsNormEps)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: CodingKeys.vocabularySize)
|
||||
self.kvHeads = try container.decode(Int.self, forKey: CodingKeys.kvHeads)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(Float.self, forKey: CodingKeys.ropeTheta)
|
||||
?? 10_000
|
||||
self.ropeTraditional =
|
||||
try container.decodeIfPresent(
|
||||
Bool.self, forKey: CodingKeys.ropeTraditional) ?? false
|
||||
self.attnLogitSoftcapping = try container.decode(
|
||||
Float.self, forKey: CodingKeys.attnLogitSoftcapping)
|
||||
self.finalLogitSoftcapping = try container.decode(
|
||||
Float.self, forKey: CodingKeys.finalLogitSoftcapping)
|
||||
self.queryPreAttnScalar = try container.decode(
|
||||
Int.self, forKey: CodingKeys.queryPreAttnScalar)
|
||||
}
|
||||
}
|
||||
|
||||
// MARK: - LoRA
|
||||
|
||||
extension Gemma2Model: LoRAModel {
|
||||
public func loraLinearLayers() -> LoRALinearLayers {
|
||||
model.layers.map { ($0.attention, ["q_proj", "v_proj"]) }
|
||||
}
|
||||
}
|
||||
@@ -7,6 +7,86 @@ import MLXNN
|
||||
|
||||
// port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/llama.py
|
||||
|
||||
func computeBaseFrequency(
|
||||
base: Float, dims: Int, ropeType: String, ropeScaling: [String: StringOrNumber]?
|
||||
)
|
||||
-> Float
|
||||
{
|
||||
if ropeType != "llama3" {
|
||||
return base
|
||||
}
|
||||
|
||||
guard let ropeScaling = ropeScaling else {
|
||||
return base
|
||||
}
|
||||
|
||||
guard case .float(let factor) = ropeScaling["factor"],
|
||||
case .float(let lowFreqFactor) = ropeScaling["low_freq_factor"] ?? .float(1.0),
|
||||
case .float(let highFreqFactor) = ropeScaling["high_freq_factor"] ?? .float(4.0),
|
||||
case .float(let oldContextLen) = ropeScaling["original_max_position_embeddings"]
|
||||
?? .float(8192)
|
||||
else {
|
||||
return base
|
||||
}
|
||||
|
||||
let lowFreqWavelen = oldContextLen / lowFreqFactor
|
||||
let highFreqWavelen = oldContextLen / highFreqFactor
|
||||
|
||||
let freqs = (0 ..< dims).compactMap { index -> Float? in
|
||||
if index % 2 == 0 {
|
||||
return pow(base, Float(index) / Float(dims))
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
let newBaseFreqs = freqs.map { freq -> Float in
|
||||
let wavelen = 2 * .pi / freq
|
||||
let smooth = max(
|
||||
0, min(1, (wavelen - highFreqWavelen) / (lowFreqWavelen - highFreqWavelen)))
|
||||
return freq * ((1 - smooth) * factor + smooth)
|
||||
}
|
||||
|
||||
return newBaseFreqs.reduce(0, +) / Float(newBaseFreqs.count)
|
||||
}
|
||||
|
||||
private class DynamicNTKScalingRoPE: Module {
|
||||
let dims: Int
|
||||
let maxPositionEmbeddings: Int?
|
||||
let traditional: Bool
|
||||
let base: Float
|
||||
var scale: Float
|
||||
let ropeType: String
|
||||
let ropeScaling: [String: StringOrNumber]?
|
||||
|
||||
init(
|
||||
dims: Int, maxPositionEmbeddings: Int?, traditional: Bool = false,
|
||||
base: Float = 10000, scale: Float = 1.0, ropeType: String = "default",
|
||||
ropeScaling: [String: StringOrNumber]? = nil
|
||||
) {
|
||||
self.dims = dims
|
||||
self.maxPositionEmbeddings = maxPositionEmbeddings
|
||||
self.traditional = traditional
|
||||
self.base = computeBaseFrequency(
|
||||
base: base, dims: dims, ropeType: ropeType, ropeScaling: ropeScaling)
|
||||
self.scale = scale
|
||||
self.ropeType = ropeType
|
||||
self.ropeScaling = ropeScaling
|
||||
}
|
||||
|
||||
func callAsFunction(_ x: MLXArray, offset: Int = 0) -> MLXArray {
|
||||
let seqLen = x.dim(1) + offset
|
||||
var base = self.base
|
||||
if let maxPositionEmbeddings, seqLen > maxPositionEmbeddings {
|
||||
let factorAdjustment = Float(seqLen) / Float(maxPositionEmbeddings) - 1
|
||||
let dimensionRatio = Float(dims) / Float(Float(dims) - 2)
|
||||
let adjustedScale = scale * pow(1 + factorAdjustment, dimensionRatio)
|
||||
base *= adjustedScale
|
||||
}
|
||||
return MLXFast.RoPE(
|
||||
x, dimensions: dims, traditional: traditional, base: base, scale: scale, offset: offset)
|
||||
}
|
||||
}
|
||||
|
||||
private class Attention: Module {
|
||||
|
||||
let args: LlamaConfiguration
|
||||
@@ -17,43 +97,40 @@ private class Attention: Module {
|
||||
@ModuleInfo(key: "v_proj") var wv: Linear
|
||||
@ModuleInfo(key: "o_proj") var wo: Linear
|
||||
|
||||
let rope: RoPE
|
||||
let rope: DynamicNTKScalingRoPE
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
init(_ args: LlamaConfiguration) {
|
||||
self.args = args
|
||||
|
||||
let dim = args.hiddenSize
|
||||
let heads = args.attentionHeads
|
||||
let kvHeads = args.kvHeads
|
||||
|
||||
let headDim = args.hiddenSize / heads
|
||||
let headDim = args.headDimensions ?? (args.hiddenSize / heads)
|
||||
self.scale = pow(Float(headDim), -0.5)
|
||||
|
||||
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: false)
|
||||
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: false)
|
||||
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: false)
|
||||
self._wq.wrappedValue = Linear(dim, heads * headDim, bias: args.attentionBias)
|
||||
self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: args.attentionBias)
|
||||
self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: args.attentionBias)
|
||||
self._wo.wrappedValue = Linear(heads * headDim, dim, bias: args.attentionBias)
|
||||
|
||||
let ropeScale: Float
|
||||
if let ropeScaling = args.ropeScaling, ropeScaling["type"] == .string("linear"),
|
||||
let factor = ropeScaling["factor"]
|
||||
{
|
||||
switch factor {
|
||||
case .string:
|
||||
fatalError("ropeScaling.factor must be a float")
|
||||
case .float(let v):
|
||||
ropeScale = 1 / v
|
||||
}
|
||||
} else {
|
||||
ropeScale = 1
|
||||
}
|
||||
|
||||
self.rope = RoPE(
|
||||
dimensions: headDim, traditional: args.ropeTraditional, base: args.ropeTheta,
|
||||
scale: ropeScale)
|
||||
self.rope = DynamicNTKScalingRoPE(
|
||||
dims: headDim,
|
||||
maxPositionEmbeddings: args.maxPositionEmbeddings,
|
||||
traditional: args.ropeTraditional,
|
||||
base: args.ropeTheta,
|
||||
scale: 1.0,
|
||||
ropeType: {
|
||||
if case .string(let value) = args.ropeScaling?["type"] {
|
||||
return value
|
||||
} else {
|
||||
return "default"
|
||||
}
|
||||
}(),
|
||||
ropeScaling: args.ropeScaling)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
let (B, L) = (x.dim(0), x.dim(1))
|
||||
@@ -62,7 +139,7 @@ private class Attention: Module {
|
||||
var keys = wk(x)
|
||||
var values = wv(x)
|
||||
|
||||
// prepare the queries, keys and values for the attention computation
|
||||
// Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3)
|
||||
keys = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
values = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3)
|
||||
@@ -93,35 +170,35 @@ private class MLP: Module, UnaryLayer {
|
||||
@ModuleInfo(key: "down_proj") var down: Linear
|
||||
@ModuleInfo(key: "up_proj") var up: Linear
|
||||
|
||||
public init(dimensions: Int, hiddenDimensions: Int) {
|
||||
self._gate.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
self._down.wrappedValue = Linear(hiddenDimensions, dimensions, bias: false)
|
||||
self._up.wrappedValue = Linear(dimensions, hiddenDimensions, bias: false)
|
||||
init(_ args: LlamaConfiguration) {
|
||||
self._gate.wrappedValue = Linear(args.hiddenSize, args.intermediateSize, bias: args.mlpBias)
|
||||
self._down.wrappedValue = Linear(args.intermediateSize, args.hiddenSize, bias: args.mlpBias)
|
||||
self._up.wrappedValue = Linear(args.hiddenSize, args.intermediateSize, bias: args.mlpBias)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
down(silu(gate(x)) * up(x))
|
||||
func callAsFunction(_ x: MLXArray) -> MLXArray {
|
||||
let activation = silu(gate(x))
|
||||
return down(activation * up(x))
|
||||
}
|
||||
}
|
||||
|
||||
private class TransformerBlock: Module {
|
||||
|
||||
@ModuleInfo(key: "self_attn") var attention: Attention
|
||||
let mlp: MLP
|
||||
@ModuleInfo(key: "mlp") var mlp: MLP
|
||||
|
||||
@ModuleInfo(key: "input_layernorm") var inputLayerNorm: RMSNorm
|
||||
@ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: RMSNorm
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
init(_ args: LlamaConfiguration) {
|
||||
self._attention.wrappedValue = Attention(args)
|
||||
self.mlp = MLP(dimensions: args.hiddenSize, hiddenDimensions: args.intermediateSize)
|
||||
self._mlp.wrappedValue = MLP(args)
|
||||
self._inputLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
self._postAttentionLayerNorm.wrappedValue = RMSNorm(
|
||||
dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(
|
||||
func callAsFunction(
|
||||
_ x: MLXArray, mask: MLXArray? = nil, cache: (MLXArray, MLXArray)? = nil
|
||||
) -> (MLXArray, (MLXArray, MLXArray)) {
|
||||
var (r, cache) = attention(inputLayerNorm(x), mask: mask, cache: cache)
|
||||
@@ -132,27 +209,24 @@ private class TransformerBlock: Module {
|
||||
}
|
||||
}
|
||||
|
||||
public class LlamaModelInner: Module {
|
||||
private class LlamaModelInner: Module {
|
||||
|
||||
@ModuleInfo(key: "embed_tokens") var embedTokens: Embedding
|
||||
|
||||
fileprivate let layers: [TransformerBlock]
|
||||
let layers: [TransformerBlock]
|
||||
let norm: RMSNorm
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
init(_ args: LlamaConfiguration) {
|
||||
precondition(args.vocabularySize > 0)
|
||||
|
||||
self._embedTokens.wrappedValue = Embedding(
|
||||
embeddingCount: args.vocabularySize, dimensions: args.hiddenSize)
|
||||
|
||||
self.layers = (0 ..< args.hiddenLayers)
|
||||
.map { _ in
|
||||
TransformerBlock(args)
|
||||
}
|
||||
self.layers = (0 ..< args.hiddenLayers).map { _ in TransformerBlock(args) }
|
||||
self.norm = RMSNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps)
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]? = nil) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
var h = embedTokens(inputs)
|
||||
@@ -178,25 +252,31 @@ public class LlamaModelInner: Module {
|
||||
public class LlamaModel: Module, LLMModel {
|
||||
|
||||
public let vocabularySize: Int
|
||||
let model: LlamaModelInner
|
||||
fileprivate let model: LlamaModelInner
|
||||
|
||||
@ModuleInfo(key: "lm_head") var lmHead: Linear
|
||||
@ModuleInfo(key: "lm_head") var lmHead: Linear?
|
||||
|
||||
public init(_ args: LlamaConfiguration) {
|
||||
self.vocabularySize = args.vocabularySize
|
||||
self.model = LlamaModelInner(args)
|
||||
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
|
||||
if !args.tieWordEmbeddings {
|
||||
self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: false)
|
||||
}
|
||||
}
|
||||
|
||||
public func callAsFunction(_ inputs: MLXArray, cache: [(MLXArray, MLXArray)]?) -> (
|
||||
MLXArray, [(MLXArray, MLXArray)]
|
||||
) {
|
||||
let (out, cache) = model(inputs, cache: cache)
|
||||
return (lmHead(out), cache)
|
||||
if let lmHead {
|
||||
return (lmHead(out), cache)
|
||||
} else {
|
||||
return (model.embedTokens.asLinear(out), cache)
|
||||
}
|
||||
}
|
||||
|
||||
public func sanitize(weights: [String: MLXArray]) -> [String: MLXArray] {
|
||||
// Remove unused precomputed rotary freqs
|
||||
// Remove unused precomputed rotary frequencies
|
||||
weights.filter {
|
||||
!$0.key.contains("self_attn.rotary_emb.inv_freq")
|
||||
}
|
||||
@@ -209,55 +289,96 @@ public struct LlamaConfiguration: Codable {
|
||||
var hiddenLayers: Int
|
||||
var intermediateSize: Int
|
||||
var attentionHeads: Int
|
||||
var headDimensions: Int?
|
||||
var rmsNormEps: Float
|
||||
var vocabularySize: Int
|
||||
var kvHeads: Int
|
||||
var maxPositionEmbeddings: Int?
|
||||
var ropeTheta: Float = 10_000
|
||||
var ropeTraditional: Bool = false
|
||||
var ropeScaling: [String: StringOrNumber]? = nil
|
||||
var ropeScaling: [String: StringOrNumber]?
|
||||
var tieWordEmbeddings: Bool = true
|
||||
var attentionBias: Bool = false
|
||||
var mlpBias: Bool = false
|
||||
|
||||
enum CodingKeys: String, CodingKey {
|
||||
case hiddenSize = "hidden_size"
|
||||
case hiddenLayers = "num_hidden_layers"
|
||||
case intermediateSize = "intermediate_size"
|
||||
case attentionHeads = "num_attention_heads"
|
||||
case headDimensions = "head_dim"
|
||||
case rmsNormEps = "rms_norm_eps"
|
||||
case vocabularySize = "vocab_size"
|
||||
case kvHeads = "num_key_value_heads"
|
||||
case maxPositionEmbeddings = "max_position_embeddings"
|
||||
case ropeTheta = "rope_theta"
|
||||
case ropeTraditional = "rope_traditional"
|
||||
case ropeScaling = "rope_scaling"
|
||||
case tieWordEmbeddings = "tie_word_embeddings"
|
||||
case attentionBias = "attention_bias"
|
||||
case mlpBias = "mlp_bias"
|
||||
}
|
||||
|
||||
public init(from decoder: Decoder) throws {
|
||||
// custom implementation to handle optional keys with required values
|
||||
let container: KeyedDecodingContainer<LlamaConfiguration.CodingKeys> =
|
||||
try decoder.container(
|
||||
keyedBy: LlamaConfiguration.CodingKeys.self)
|
||||
let container = try decoder.container(keyedBy: CodingKeys.self)
|
||||
|
||||
self.hiddenSize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenSize)
|
||||
self.hiddenLayers = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.hiddenLayers)
|
||||
self.intermediateSize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.intermediateSize)
|
||||
self.attentionHeads = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.attentionHeads)
|
||||
self.rmsNormEps = try container.decode(
|
||||
Float.self, forKey: LlamaConfiguration.CodingKeys.rmsNormEps)
|
||||
self.vocabularySize = try container.decode(
|
||||
Int.self, forKey: LlamaConfiguration.CodingKeys.vocabularySize)
|
||||
self.kvHeads = try container.decode(Int.self, forKey: LlamaConfiguration.CodingKeys.kvHeads)
|
||||
self.ropeTheta =
|
||||
try container.decodeIfPresent(
|
||||
Float.self, forKey: LlamaConfiguration.CodingKeys.ropeTheta)
|
||||
?? 10_000
|
||||
self.ropeTraditional =
|
||||
try container.decodeIfPresent(
|
||||
Bool.self, forKey: LlamaConfiguration.CodingKeys.ropeTraditional) ?? false
|
||||
self.ropeScaling = try container.decodeIfPresent(
|
||||
[String: StringOrNumber].self, forKey: LlamaConfiguration.CodingKeys.ropeScaling)
|
||||
hiddenSize = try container.decode(Int.self, forKey: .hiddenSize)
|
||||
hiddenLayers = try container.decode(Int.self, forKey: .hiddenLayers)
|
||||
intermediateSize = try container.decode(Int.self, forKey: .intermediateSize)
|
||||
attentionHeads = try container.decode(Int.self, forKey: .attentionHeads)
|
||||
headDimensions = try container.decodeIfPresent(Int.self, forKey: .headDimensions)
|
||||
rmsNormEps = try container.decode(Float.self, forKey: .rmsNormEps)
|
||||
vocabularySize = try container.decode(Int.self, forKey: .vocabularySize)
|
||||
kvHeads = try container.decodeIfPresent(Int.self, forKey: .kvHeads) ?? attentionHeads
|
||||
maxPositionEmbeddings = try container.decodeIfPresent(
|
||||
Int.self, forKey: .maxPositionEmbeddings)
|
||||
if let ropeTheta = try container.decodeIfPresent(Float.self, forKey: .ropeTheta) {
|
||||
self.ropeTheta = ropeTheta
|
||||
}
|
||||
if let ropeTraditional = try container.decodeIfPresent(Bool.self, forKey: .ropeTraditional)
|
||||
{
|
||||
self.ropeTraditional = ropeTraditional
|
||||
}
|
||||
ropeScaling = try container.decodeIfPresent(
|
||||
[String: StringOrNumber].self, forKey: .ropeScaling)
|
||||
if let tieWordEmbeddings = try container.decodeIfPresent(
|
||||
Bool.self, forKey: .tieWordEmbeddings)
|
||||
{
|
||||
self.tieWordEmbeddings = tieWordEmbeddings
|
||||
}
|
||||
if let attentionBias = try container.decodeIfPresent(Bool.self, forKey: .attentionBias) {
|
||||
self.attentionBias = attentionBias
|
||||
}
|
||||
if let mlpBias = try container.decodeIfPresent(Bool.self, forKey: .mlpBias) {
|
||||
self.mlpBias = mlpBias
|
||||
}
|
||||
|
||||
if let ropeScaling {
|
||||
if ropeScaling["factor"] == nil {
|
||||
throw DecodingError.dataCorruptedError(
|
||||
forKey: .ropeScaling, in: container,
|
||||
debugDescription: "rope_scaling must contain 'factor'")
|
||||
}
|
||||
if let ropeType = ropeScaling["type"] ?? ropeScaling["rope_type"] {
|
||||
if case .string = ropeType {
|
||||
let options = [
|
||||
StringOrNumber.string("linear"), StringOrNumber.string("dynamic"),
|
||||
StringOrNumber.string("llama3"),
|
||||
]
|
||||
if !options.contains(ropeType) {
|
||||
throw DecodingError.dataCorruptedError(
|
||||
forKey: .ropeScaling, in: container,
|
||||
debugDescription:
|
||||
"rope_scaling 'type' currently only supports 'linear', 'dynamic', or 'llama3'"
|
||||
)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
throw DecodingError.dataCorruptedError(
|
||||
forKey: .ropeScaling, in: container,
|
||||
debugDescription: "rope_scaling must contain either 'type' or 'rope_type'")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -110,13 +110,27 @@ public struct ModelConfiguration {
|
||||
}
|
||||
|
||||
extension ModelConfiguration {
|
||||
public static let smolLM_135M_4bit = ModelConfiguration(
|
||||
id: "mlx-community/SmolLM-135M-Instruct-4bit",
|
||||
defaultPrompt: "Tell me about the history of Spain."
|
||||
) {
|
||||
prompt in
|
||||
"<|im_start|>user\n\(prompt)<|im_end|>\n<|im_start|>assistant\n"
|
||||
}
|
||||
|
||||
public static let mistralNeMo4bit = ModelConfiguration(
|
||||
id: "mlx-community/Mistral-Nemo-Instruct-2407-4bit",
|
||||
defaultPrompt: "Explain quaternions."
|
||||
) { prompt in
|
||||
"<s>[INST] \(prompt) [/INST] "
|
||||
}
|
||||
|
||||
public static let mistral7B4bit = ModelConfiguration(
|
||||
id: "mlx-community/Mistral-7B-v0.1-hf-4bit-mlx",
|
||||
|
||||
// https://www.promptingguide.ai/models/mistral-7b
|
||||
defaultPrompt: "describe the swift language"
|
||||
)
|
||||
id: "mlx-community/Mistral-7B-Instruct-v0.3-4bit",
|
||||
defaultPrompt: "Describe the Swift language."
|
||||
) { prompt in
|
||||
"<s>[INST] \(prompt) [/INST] "
|
||||
}
|
||||
|
||||
public static let codeLlama13b4bit = ModelConfiguration(
|
||||
id: "mlx-community/CodeLlama-13b-Instruct-hf-4bit-MLX",
|
||||
@@ -137,7 +151,7 @@ extension ModelConfiguration {
|
||||
defaultPrompt: "Why is the sky blue?"
|
||||
)
|
||||
|
||||
public static let phi34bit = ModelConfiguration(
|
||||
public static let phi3_4bit = ModelConfiguration(
|
||||
id: "mlx-community/Phi-3-mini-4k-instruct-4bit-no-q-embed",
|
||||
defaultPrompt: "what is the gravity on mars and the moon?",
|
||||
extraEOSTokens: ["<|end|>"]
|
||||
@@ -153,6 +167,28 @@ extension ModelConfiguration {
|
||||
// https://www.promptingguide.ai/models/gemma
|
||||
defaultPrompt: "what is the difference between lettuce and cabbage?"
|
||||
|
||||
) { prompt in
|
||||
"<start_of_turn>user\n\(prompt)<end_of_turn>\n<start_of_turn>model\n"
|
||||
}
|
||||
|
||||
public static let gemma_2_9b_it_4bit = ModelConfiguration(
|
||||
id: "mlx-community/gemma-2-9b-it-4bit",
|
||||
overrideTokenizer: "PreTrainedTokenizer",
|
||||
|
||||
// https://www.promptingguide.ai/models/gemma
|
||||
defaultPrompt: "What is the difference between lettuce and cabbage?"
|
||||
|
||||
) { prompt in
|
||||
"<start_of_turn>user\n\(prompt)<end_of_turn>\n<start_of_turn>model\n"
|
||||
}
|
||||
|
||||
public static let gemma_2_2b_it_4bit = ModelConfiguration(
|
||||
id: "mlx-community/gemma-2-2b-it-4bit",
|
||||
overrideTokenizer: "PreTrainedTokenizer",
|
||||
|
||||
// https://www.promptingguide.ai/models/gemma
|
||||
defaultPrompt: "What is the difference between lettuce and cabbage?"
|
||||
|
||||
) { prompt in
|
||||
"<start_of_turn>user \(prompt)<end_of_turn><start_of_turn>model"
|
||||
}
|
||||
@@ -174,9 +210,17 @@ extension ModelConfiguration {
|
||||
"\(prompt)"
|
||||
}
|
||||
|
||||
public static let llama38B4bit = ModelConfiguration(
|
||||
public static let llama3_1_8B_4bit = ModelConfiguration(
|
||||
id: "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit",
|
||||
defaultPrompt: "What is the difference between a fruit and a vegetable?"
|
||||
) {
|
||||
prompt in
|
||||
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\nYou are a helpful assistant<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\(prompt)<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
|
||||
}
|
||||
|
||||
public static let llama3_8B_4bit = ModelConfiguration(
|
||||
id: "mlx-community/Meta-Llama-3-8B-Instruct-4bit",
|
||||
defaultPrompt: "what is the difference between a fruit and a vegetable?"
|
||||
defaultPrompt: "What is the difference between a fruit and a vegetable?"
|
||||
) {
|
||||
prompt in
|
||||
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\nYou are a helpful assistant<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\(prompt)<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
|
||||
@@ -195,11 +239,15 @@ extension ModelConfiguration {
|
||||
case .idle:
|
||||
bootstrapState = .bootstrapping
|
||||
register(configurations: [
|
||||
llama3_1_8B_4bit,
|
||||
mistralNeMo4bit,
|
||||
smolLM_135M_4bit,
|
||||
mistral7B4bit,
|
||||
codeLlama13b4bit,
|
||||
phi4bit,
|
||||
phi34bit,
|
||||
phi3_4bit,
|
||||
gemma2bQuantized,
|
||||
gemma_2_9b_it_4bit,
|
||||
qwen205b4bit,
|
||||
openelm270m4bit,
|
||||
])
|
||||
|
||||
@@ -15,9 +15,9 @@ let package = Package(
|
||||
targets: ["MLXMNIST"]),
|
||||
],
|
||||
dependencies: [
|
||||
.package(url: "https://github.com/ml-explore/mlx-swift", branch: "main"),
|
||||
.package(url: "https://github.com/huggingface/swift-transformers", from: "0.1.5"),
|
||||
.package(url: "https://github.com/1024jp/GzipSwift", from: "6.0.1"),
|
||||
.package(url: "https://github.com/ml-explore/mlx-swift", from: "0.12.1"),
|
||||
.package(url: "https://github.com/huggingface/swift-transformers", from: "0.1.8"),
|
||||
.package(url: "https://github.com/1024jp/GzipSwift", "6.0.1" ... "6.0.1"),
|
||||
.package(url: "https://github.com/apple/swift-async-algorithms", from: "1.0.0"),
|
||||
],
|
||||
targets: [
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
12305EAF2B9D864400C92FEE /* PredictionView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 12305EAE2B9D864400C92FEE /* PredictionView.swift */; };
|
||||
1C55317A2C5AAB4E00B07ECD /* Gemma2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 1C5531792C5AAB4E00B07ECD /* Gemma2.swift */; };
|
||||
1CD79C702BD80DE100B6C06F /* Phi3.swift in Sources */ = {isa = PBXBuildFile; fileRef = 1CD79C6F2BD80DE100B6C06F /* Phi3.swift */; };
|
||||
525C1E9D2B9A011000B5C356 /* Starcoder2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 525C1E9C2B9A010F00B5C356 /* Starcoder2.swift */; };
|
||||
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */ = {isa = PBXBuildFile; fileRef = 52A776172B94B5EE00AA6E80 /* Qwen2.swift */; };
|
||||
@@ -218,6 +219,7 @@
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
12305EAE2B9D864400C92FEE /* PredictionView.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = PredictionView.swift; sourceTree = "<group>"; };
|
||||
1C5531792C5AAB4E00B07ECD /* Gemma2.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Gemma2.swift; sourceTree = "<group>"; };
|
||||
1CD79C6F2BD80DE100B6C06F /* Phi3.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Phi3.swift; sourceTree = "<group>"; };
|
||||
525C1E9C2B9A010F00B5C356 /* Starcoder2.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Starcoder2.swift; sourceTree = "<group>"; };
|
||||
52A776172B94B5EE00AA6E80 /* Qwen2.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = Qwen2.swift; sourceTree = "<group>"; };
|
||||
@@ -480,6 +482,7 @@
|
||||
C3A8B3AB2B9283150002EFB8 /* Models.swift */,
|
||||
C34E48EE2B696E6500FCB841 /* Llama.swift */,
|
||||
C38935E22B86C0FE0037B833 /* Gemma.swift */,
|
||||
1C5531792C5AAB4E00B07ECD /* Gemma2.swift */,
|
||||
C38935C72B869C7A0037B833 /* LLM.h */,
|
||||
C38935E02B869F420037B833 /* LLMModel.swift */,
|
||||
C38935DE2B869DD00037B833 /* Phi.swift */,
|
||||
@@ -1014,6 +1017,7 @@
|
||||
C38935CE2B869C870037B833 /* Load.swift in Sources */,
|
||||
C3E786AD2B8D4AF50004D037 /* Tokenizer.swift in Sources */,
|
||||
C3A8B3AC2B9283150002EFB8 /* Models.swift in Sources */,
|
||||
1C55317A2C5AAB4E00B07ECD /* Gemma2.swift in Sources */,
|
||||
C3E786AB2B8D1AEC0004D037 /* Evaluate.swift in Sources */,
|
||||
C38935CC2B869C870037B833 /* Llama.swift in Sources */,
|
||||
52A776182B94B5EE00AA6E80 /* Qwen2.swift in Sources */,
|
||||
@@ -1130,7 +1134,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/LoRATrainingExample/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = "";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
@@ -1168,7 +1172,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LoRATrainingExample;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LoRATrainingExample;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
|
||||
@@ -1222,7 +1226,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/LoRATrainingExample/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = "";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
@@ -1254,7 +1258,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LoRATrainingExample;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LoRATrainingExample;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
|
||||
@@ -1302,6 +1306,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -1367,6 +1372,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -1422,12 +1428,14 @@
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COMBINE_HIDPI_IMAGES = YES;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEFINES_MODULE = YES;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
DYLIB_COMPATIBILITY_VERSION = 1;
|
||||
DYLIB_CURRENT_VERSION = 1;
|
||||
DYLIB_INSTALL_NAME_BASE = "@rpath";
|
||||
@@ -1465,7 +1473,7 @@
|
||||
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNIST;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNIST;
|
||||
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
|
||||
SDKROOT = macosx;
|
||||
SKIP_INSTALL = YES;
|
||||
@@ -1514,12 +1522,14 @@
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COMBINE_HIDPI_IMAGES = YES;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEFINES_MODULE = YES;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
DYLIB_COMPATIBILITY_VERSION = 1;
|
||||
DYLIB_CURRENT_VERSION = 1;
|
||||
DYLIB_INSTALL_NAME_BASE = "@rpath";
|
||||
@@ -1551,7 +1561,7 @@
|
||||
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNIST;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNIST;
|
||||
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
|
||||
SDKROOT = macosx;
|
||||
SKIP_INSTALL = YES;
|
||||
@@ -1602,6 +1612,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -1667,6 +1678,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -1722,11 +1734,13 @@
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEFINES_MODULE = YES;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
DYLIB_COMPATIBILITY_VERSION = 1;
|
||||
DYLIB_CURRENT_VERSION = 1;
|
||||
DYLIB_INSTALL_NAME_BASE = "@rpath";
|
||||
@@ -1767,7 +1781,7 @@
|
||||
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLM;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LLM;
|
||||
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
|
||||
SDKROOT = auto;
|
||||
SKIP_INSTALL = YES;
|
||||
@@ -1815,11 +1829,13 @@
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
CODE_SIGN_IDENTITY = "Apple Development";
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEFINES_MODULE = YES;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
DYLIB_COMPATIBILITY_VERSION = 1;
|
||||
DYLIB_CURRENT_VERSION = 1;
|
||||
DYLIB_INSTALL_NAME_BASE = "@rpath";
|
||||
@@ -1854,7 +1870,7 @@
|
||||
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLM;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.LLM;
|
||||
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
|
||||
SDKROOT = auto;
|
||||
SKIP_INSTALL = YES;
|
||||
@@ -1922,6 +1938,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -1988,6 +2005,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -2046,6 +2064,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -2111,6 +2130,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_USER_SCRIPT_SANDBOXING = YES;
|
||||
@@ -2174,6 +2194,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/MNISTTrainer/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
@@ -2212,7 +2233,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNISTTrainer;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNISTTrainer;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx";
|
||||
@@ -2265,6 +2286,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/MNISTTrainer/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
@@ -2297,7 +2319,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.MNISTTrainer;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.mlx.MNISTTrainer;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx";
|
||||
@@ -2349,7 +2371,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/LLMEval/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = "";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
@@ -2379,7 +2401,7 @@
|
||||
"INFOPLIST_KEY_UIStatusBarStyle[sdk=iphonesimulator*]" = UIStatusBarStyleDefault;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 17.2;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
|
||||
LD_RUNPATH_SEARCH_PATHS = "@executable_path/Frameworks";
|
||||
"LD_RUNPATH_SEARCH_PATHS[sdk=macosx*]" = "@executable_path/../Frameworks";
|
||||
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
|
||||
@@ -2387,7 +2409,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLMEval;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.LLMEval;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
|
||||
@@ -2440,7 +2462,7 @@
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
DEVELOPMENT_ASSET_PATHS = "\"Applications/LLMEval/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = "";
|
||||
DEVELOPMENT_TEAM = GZPQ4W3XF5;
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
@@ -2464,7 +2486,7 @@
|
||||
"INFOPLIST_KEY_UIStatusBarStyle[sdk=iphonesimulator*]" = UIStatusBarStyleDefault;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 17.2;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
|
||||
LD_RUNPATH_SEARCH_PATHS = "@executable_path/Frameworks";
|
||||
"LD_RUNPATH_SEARCH_PATHS[sdk=macosx*]" = "@executable_path/../Frameworks";
|
||||
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
|
||||
@@ -2472,7 +2494,7 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = mlx.LLMEval;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = cn.bewords.LLMEval;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator macosx xros xrsimulator";
|
||||
@@ -2591,8 +2613,8 @@
|
||||
isa = XCRemoteSwiftPackageReference;
|
||||
repositoryURL = "https://github.com/1024jp/GzipSwift";
|
||||
requirement = {
|
||||
kind = upToNextMajorVersion;
|
||||
minimumVersion = 6.0.1;
|
||||
kind = exactVersion;
|
||||
version = 6.0.1;
|
||||
};
|
||||
};
|
||||
C382DE882B630889000F8F03 /* XCRemoteSwiftPackageReference "swift-async-algorithms" */ = {
|
||||
@@ -2607,8 +2629,8 @@
|
||||
isa = XCRemoteSwiftPackageReference;
|
||||
repositoryURL = "https://github.com/huggingface/swift-transformers";
|
||||
requirement = {
|
||||
branch = main;
|
||||
kind = branch;
|
||||
kind = upToNextMajorVersion;
|
||||
minimumVersion = 0.1.8;
|
||||
};
|
||||
};
|
||||
C392736E2B60699100368D5D /* XCRemoteSwiftPackageReference "swift-argument-parser" */ = {
|
||||
@@ -2623,8 +2645,8 @@
|
||||
isa = XCRemoteSwiftPackageReference;
|
||||
repositoryURL = "https://github.com/ml-explore/mlx-swift";
|
||||
requirement = {
|
||||
branch = main;
|
||||
kind = branch;
|
||||
kind = upToNextMajorVersion;
|
||||
minimumVersion = 0.12.1;
|
||||
};
|
||||
};
|
||||
/* End XCRemoteSwiftPackageReference section */
|
||||
|
||||
@@ -15,8 +15,8 @@
|
||||
"kind" : "remoteSourceControl",
|
||||
"location" : "https://github.com/ml-explore/mlx-swift",
|
||||
"state" : {
|
||||
"branch" : "main",
|
||||
"revision" : "d6d9472da5bf7ec2654e8914bd1d15622f45b6a9"
|
||||
"revision" : "36d63a1fc386a551df14f5b67df1756dc17d2ebc",
|
||||
"version" : "0.12.1"
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -78,8 +78,8 @@
|
||||
"kind" : "remoteSourceControl",
|
||||
"location" : "https://github.com/huggingface/swift-transformers",
|
||||
"state" : {
|
||||
"branch" : "main",
|
||||
"revision" : "fc6543263e4caed9bf6107466d625cfae9357f08"
|
||||
"revision" : "fc6543263e4caed9bf6107466d625cfae9357f08",
|
||||
"version" : "0.1.8"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -31,8 +31,8 @@
|
||||
</TestAction>
|
||||
<LaunchAction
|
||||
buildConfiguration = "Release"
|
||||
selectedDebuggerIdentifier = "Xcode.DebuggerFoundation.Debugger.LLDB"
|
||||
selectedLauncherIdentifier = "Xcode.DebuggerFoundation.Launcher.LLDB"
|
||||
selectedDebuggerIdentifier = ""
|
||||
selectedLauncherIdentifier = "Xcode.IDEFoundation.Launcher.PosixSpawn"
|
||||
launchStyle = "0"
|
||||
useCustomWorkingDirectory = "NO"
|
||||
ignoresPersistentStateOnLaunch = "NO"
|
||||
|
||||
@@ -31,8 +31,8 @@
|
||||
</TestAction>
|
||||
<LaunchAction
|
||||
buildConfiguration = "Release"
|
||||
selectedDebuggerIdentifier = "Xcode.DebuggerFoundation.Debugger.LLDB"
|
||||
selectedLauncherIdentifier = "Xcode.DebuggerFoundation.Launcher.LLDB"
|
||||
selectedDebuggerIdentifier = ""
|
||||
selectedLauncherIdentifier = "Xcode.IDEFoundation.Launcher.PosixSpawn"
|
||||
launchStyle = "0"
|
||||
useCustomWorkingDirectory = "NO"
|
||||
ignoresPersistentStateOnLaunch = "NO"
|
||||
|
||||
Reference in New Issue
Block a user