123 lines
3.1 KiB
Python
123 lines
3.1 KiB
Python
import pickle
|
||
import os
|
||
import re
|
||
|
||
from . import symbols
|
||
from .es_phonemizer import cleaner as es_cleaner
|
||
from .es_phonemizer import es_to_ipa
|
||
from transformers import AutoTokenizer
|
||
|
||
|
||
def distribute_phone(n_phone, n_word):
|
||
phones_per_word = [0] * n_word
|
||
for task in range(n_phone):
|
||
min_tasks = min(phones_per_word)
|
||
min_index = phones_per_word.index(min_tasks)
|
||
phones_per_word[min_index] += 1
|
||
return phones_per_word
|
||
|
||
def text_normalize(text):
|
||
text = es_cleaner.spanish_cleaners(text)
|
||
return text
|
||
|
||
def post_replace_ph(ph):
|
||
rep_map = {
|
||
":": ",",
|
||
";": ",",
|
||
",": ",",
|
||
"。": ".",
|
||
"!": "!",
|
||
"?": "?",
|
||
"\n": ".",
|
||
"·": ",",
|
||
"、": ",",
|
||
"...": "…"
|
||
}
|
||
if ph in rep_map.keys():
|
||
ph = rep_map[ph]
|
||
if ph in symbols:
|
||
return ph
|
||
if ph not in symbols:
|
||
ph = "UNK"
|
||
return ph
|
||
|
||
def refine_ph(phn):
|
||
tone = 0
|
||
if re.search(r"\d$", phn):
|
||
tone = int(phn[-1]) + 1
|
||
phn = phn[:-1]
|
||
return phn.lower(), tone
|
||
|
||
|
||
def refine_syllables(syllables):
|
||
tones = []
|
||
phonemes = []
|
||
for phn_list in syllables:
|
||
for i in range(len(phn_list)):
|
||
phn = phn_list[i]
|
||
phn, tone = refine_ph(phn)
|
||
phonemes.append(phn)
|
||
tones.append(tone)
|
||
return phonemes, tones
|
||
|
||
|
||
# model_id = 'bert-base-uncased'
|
||
model_id = 'dccuchile/bert-base-spanish-wwm-uncased'
|
||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
|
||
def g2p(text, pad_start_end=True, tokenized=None):
|
||
if tokenized is None:
|
||
tokenized = tokenizer.tokenize(text)
|
||
# import pdb; pdb.set_trace()
|
||
phs = []
|
||
ph_groups = []
|
||
for t in tokenized:
|
||
if not t.startswith("#"):
|
||
ph_groups.append([t])
|
||
else:
|
||
ph_groups[-1].append(t.replace("#", ""))
|
||
|
||
phones = []
|
||
tones = []
|
||
word2ph = []
|
||
# print(ph_groups)
|
||
for group in ph_groups:
|
||
w = "".join(group)
|
||
phone_len = 0
|
||
word_len = len(group)
|
||
if w == '[UNK]':
|
||
phone_list = ['UNK']
|
||
else:
|
||
phone_list = list(filter(lambda p: p != " ", es_to_ipa.es2ipa(w)))
|
||
|
||
for ph in phone_list:
|
||
phones.append(ph)
|
||
tones.append(0)
|
||
phone_len += 1
|
||
aaa = distribute_phone(phone_len, word_len)
|
||
word2ph += aaa
|
||
# print(phone_list, aaa)
|
||
# print('=' * 10)
|
||
|
||
if pad_start_end:
|
||
phones = ["_"] + phones + ["_"]
|
||
tones = [0] + tones + [0]
|
||
word2ph = [1] + word2ph + [1]
|
||
return phones, tones, word2ph
|
||
|
||
def get_bert_feature(text, word2ph, device=None):
|
||
from text import spanish_bert
|
||
return spanish_bert.get_bert_feature(text, word2ph, device=device)
|
||
|
||
if __name__ == "__main__":
|
||
text = "en nuestros tiempos estos dos pueblos ilustres empiezan a curarse, gracias sólo a la sana y vigorosa higiene de 1789."
|
||
# print(text)
|
||
text = text_normalize(text)
|
||
print(text)
|
||
phones, tones, word2ph = g2p(text)
|
||
bert = get_bert_feature(text, word2ph)
|
||
print(phones)
|
||
print(len(phones), tones, sum(word2ph), bert.shape)
|
||
|
||
|