254 lines
8.4 KiB
Python
254 lines
8.4 KiB
Python
import os
|
||
import re
|
||
|
||
import cn2an
|
||
from pypinyin import lazy_pinyin, Style
|
||
|
||
# from text.symbols import punctuation
|
||
from .symbols import language_tone_start_map
|
||
from .tone_sandhi import ToneSandhi
|
||
from .english import g2p as g2p_en
|
||
from transformers import AutoTokenizer
|
||
|
||
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
|
||
current_file_path = os.path.dirname(__file__)
|
||
pinyin_to_symbol_map = {
|
||
line.split("\t")[0]: line.strip().split("\t")[1]
|
||
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
||
}
|
||
|
||
import jieba.posseg as psg
|
||
|
||
|
||
rep_map = {
|
||
":": ",",
|
||
";": ",",
|
||
",": ",",
|
||
"。": ".",
|
||
"!": "!",
|
||
"?": "?",
|
||
"\n": ".",
|
||
"·": ",",
|
||
"、": ",",
|
||
"...": "…",
|
||
"$": ".",
|
||
"“": "'",
|
||
"”": "'",
|
||
"‘": "'",
|
||
"’": "'",
|
||
"(": "'",
|
||
")": "'",
|
||
"(": "'",
|
||
")": "'",
|
||
"《": "'",
|
||
"》": "'",
|
||
"【": "'",
|
||
"】": "'",
|
||
"[": "'",
|
||
"]": "'",
|
||
"—": "-",
|
||
"~": "-",
|
||
"~": "-",
|
||
"「": "'",
|
||
"」": "'",
|
||
}
|
||
|
||
tone_modifier = ToneSandhi()
|
||
|
||
|
||
def replace_punctuation(text):
|
||
text = text.replace("嗯", "恩").replace("呣", "母")
|
||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||
replaced_text = re.sub(r"[^\u4e00-\u9fa5_a-zA-Z\s" + "".join(punctuation) + r"]+", "", replaced_text)
|
||
replaced_text = re.sub(r"[\s]+", " ", replaced_text)
|
||
|
||
return replaced_text
|
||
|
||
|
||
def g2p(text, impl='v2'):
|
||
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
||
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
||
if impl == 'v1':
|
||
_func = _g2p
|
||
elif impl == 'v2':
|
||
_func = _g2p_v2
|
||
else:
|
||
raise NotImplementedError()
|
||
phones, tones, word2ph = _func(sentences)
|
||
assert sum(word2ph) == len(phones)
|
||
# assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
||
phones = ["_"] + phones + ["_"]
|
||
tones = [0] + tones + [0]
|
||
word2ph = [1] + word2ph + [1]
|
||
return phones, tones, word2ph
|
||
|
||
|
||
def _get_initials_finals(word):
|
||
initials = []
|
||
finals = []
|
||
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||
orig_finals = lazy_pinyin(
|
||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
||
)
|
||
for c, v in zip(orig_initials, orig_finals):
|
||
initials.append(c)
|
||
finals.append(v)
|
||
return initials, finals
|
||
|
||
model_id = 'bert-base-multilingual-uncased'
|
||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
def _g2p(segments):
|
||
phones_list = []
|
||
tones_list = []
|
||
word2ph = []
|
||
for seg in segments:
|
||
# Replace all English words in the sentence
|
||
# seg = re.sub("[a-zA-Z]+", "", seg)
|
||
seg_cut = psg.lcut(seg)
|
||
initials = []
|
||
finals = []
|
||
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
||
for word, pos in seg_cut:
|
||
if pos == "eng":
|
||
initials.append(['EN_WORD'])
|
||
finals.append([word])
|
||
else:
|
||
sub_initials, sub_finals = _get_initials_finals(word)
|
||
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
||
initials.append(sub_initials)
|
||
finals.append(sub_finals)
|
||
|
||
# assert len(sub_initials) == len(sub_finals) == len(word)
|
||
initials = sum(initials, [])
|
||
finals = sum(finals, [])
|
||
#
|
||
for c, v in zip(initials, finals):
|
||
if c == 'EN_WORD':
|
||
tokenized_en = tokenizer.tokenize(v)
|
||
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en)
|
||
# apply offset to tones_en
|
||
tones_en = [t + language_tone_start_map['EN'] for t in tones_en]
|
||
phones_list += phones_en
|
||
tones_list += tones_en
|
||
word2ph += word2ph_en
|
||
else:
|
||
raw_pinyin = c + v
|
||
# NOTE: post process for pypinyin outputs
|
||
# we discriminate i, ii and iii
|
||
if c == v:
|
||
assert c in punctuation
|
||
phone = [c]
|
||
tone = "0"
|
||
word2ph.append(1)
|
||
else:
|
||
v_without_tone = v[:-1]
|
||
tone = v[-1]
|
||
|
||
pinyin = c + v_without_tone
|
||
assert tone in "12345"
|
||
|
||
if c:
|
||
# 多音节
|
||
v_rep_map = {
|
||
"uei": "ui",
|
||
"iou": "iu",
|
||
"uen": "un",
|
||
}
|
||
if v_without_tone in v_rep_map.keys():
|
||
pinyin = c + v_rep_map[v_without_tone]
|
||
else:
|
||
# 单音节
|
||
pinyin_rep_map = {
|
||
"ing": "ying",
|
||
"i": "yi",
|
||
"in": "yin",
|
||
"u": "wu",
|
||
}
|
||
if pinyin in pinyin_rep_map.keys():
|
||
pinyin = pinyin_rep_map[pinyin]
|
||
else:
|
||
single_rep_map = {
|
||
"v": "yu",
|
||
"e": "e",
|
||
"i": "y",
|
||
"u": "w",
|
||
}
|
||
if pinyin[0] in single_rep_map.keys():
|
||
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
||
|
||
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
||
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
||
word2ph.append(len(phone))
|
||
|
||
phones_list += phone
|
||
tones_list += [int(tone)] * len(phone)
|
||
return phones_list, tones_list, word2ph
|
||
|
||
|
||
def text_normalize(text):
|
||
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
||
for number in numbers:
|
||
text = text.replace(number, cn2an.an2cn(number), 1)
|
||
text = replace_punctuation(text)
|
||
return text
|
||
|
||
|
||
def get_bert_feature(text, word2ph, device):
|
||
from . import chinese_bert
|
||
return chinese_bert.get_bert_feature(text, word2ph, model_id='bert-base-multilingual-uncased', device=device)
|
||
|
||
from .chinese import _g2p as _chinese_g2p
|
||
def _g2p_v2(segments):
|
||
spliter = '#$&^!@'
|
||
|
||
phones_list = []
|
||
tones_list = []
|
||
word2ph = []
|
||
|
||
for text in segments:
|
||
assert spliter not in text
|
||
# replace all english words
|
||
text = re.sub('([a-zA-Z\s]+)', lambda x: f'{spliter}{x.group(1)}{spliter}', text)
|
||
texts = text.split(spliter)
|
||
texts = [t for t in texts if len(t) > 0]
|
||
|
||
|
||
for text in texts:
|
||
if re.match('[a-zA-Z\s]+', text):
|
||
# english
|
||
tokenized_en = tokenizer.tokenize(text)
|
||
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en)
|
||
# apply offset to tones_en
|
||
tones_en = [t + language_tone_start_map['EN'] for t in tones_en]
|
||
phones_list += phones_en
|
||
tones_list += tones_en
|
||
word2ph += word2ph_en
|
||
else:
|
||
phones_zh, tones_zh, word2ph_zh = _chinese_g2p([text])
|
||
phones_list += phones_zh
|
||
tones_list += tones_zh
|
||
word2ph += word2ph_zh
|
||
return phones_list, tones_list, word2ph
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# from text.chinese_bert import get_bert_feature
|
||
|
||
text = "NFT啊!chemistry 但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
||
text = '我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。'
|
||
text = '今天下午,我们准备去shopping mall购物,然后晚上去看一场movie。'
|
||
text = '我们现在 also 能够 help 很多公司 use some machine learning 的 algorithms 啊!'
|
||
text = text_normalize(text)
|
||
print(text)
|
||
phones, tones, word2ph = g2p(text, impl='v2')
|
||
bert = get_bert_feature(text, word2ph, device='cuda:0')
|
||
print(phones)
|
||
import pdb; pdb.set_trace()
|
||
|
||
|
||
# # 示例用法
|
||
# text = "这是一个示例文本:,你好!这是一个测试...."
|
||
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|