training code done
This commit is contained in:
635
melo/train.py
Normal file
635
melo/train.py
Normal file
@@ -0,0 +1,635 @@
|
||||
# flake8: noqa: E402
|
||||
|
||||
import os
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
import commons
|
||||
import utils
|
||||
from data_utils import (
|
||||
TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from models import (
|
||||
SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
DurationDiscriminator,
|
||||
)
|
||||
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from text.symbols import symbols
|
||||
from melo.download_utils import load_pretrain_model
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = (
|
||||
True # If encontered training problem,please try to disable TF32.
|
||||
)
|
||||
torch.set_float32_matmul_precision("medium")
|
||||
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.sdp_kernel("flash")
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
# torch.backends.cuda.enable_mem_efficient_sdp(
|
||||
# True
|
||||
# ) # Not available if torch version is lower than 2.0
|
||||
torch.backends.cuda.enable_math_sdp(True)
|
||||
global_step = 0
|
||||
|
||||
|
||||
def run():
|
||||
hps = utils.get_hparams()
|
||||
local_rank = int(os.environ["LOCAL_RANK"])
|
||||
dist.init_process_group(
|
||||
backend="gloo",
|
||||
init_method="env://", # Due to some training problem,we proposed to use gloo instead of nccl.
|
||||
rank=local_rank,
|
||||
) # Use torchrun instead of mp.spawn
|
||||
rank = dist.get_rank()
|
||||
n_gpus = dist.get_world_size()
|
||||
|
||||
torch.manual_seed(hps.train.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
global global_step
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.model_dir)
|
||||
logger.info(hps)
|
||||
utils.check_git_hash(hps.model_dir)
|
||||
writer = SummaryWriter(log_dir=hps.model_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True,
|
||||
)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
num_workers=16,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
collate_fn=collate_fn,
|
||||
batch_sampler=train_sampler,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=4,
|
||||
) # DataLoader config could be adjusted.
|
||||
if rank == 0:
|
||||
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
||||
eval_loader = DataLoader(
|
||||
eval_dataset,
|
||||
num_workers=0,
|
||||
shuffle=False,
|
||||
batch_size=1,
|
||||
pin_memory=True,
|
||||
drop_last=False,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
if (
|
||||
"use_noise_scaled_mas" in hps.model.keys()
|
||||
and hps.model.use_noise_scaled_mas is True
|
||||
):
|
||||
print("Using noise scaled MAS for VITS2")
|
||||
mas_noise_scale_initial = 0.01
|
||||
noise_scale_delta = 2e-6
|
||||
else:
|
||||
print("Using normal MAS for VITS1")
|
||||
mas_noise_scale_initial = 0.0
|
||||
noise_scale_delta = 0.0
|
||||
if (
|
||||
"use_duration_discriminator" in hps.model.keys()
|
||||
and hps.model.use_duration_discriminator is True
|
||||
):
|
||||
print("Using duration discriminator for VITS2")
|
||||
net_dur_disc = DurationDiscriminator(
|
||||
hps.model.hidden_channels,
|
||||
hps.model.hidden_channels,
|
||||
3,
|
||||
0.1,
|
||||
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
||||
).cuda(rank)
|
||||
if (
|
||||
"use_spk_conditioned_encoder" in hps.model.keys()
|
||||
and hps.model.use_spk_conditioned_encoder is True
|
||||
):
|
||||
if hps.data.n_speakers == 0:
|
||||
raise ValueError(
|
||||
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
||||
)
|
||||
else:
|
||||
print("Using normal encoder for VITS1")
|
||||
|
||||
net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
mas_noise_scale_initial=mas_noise_scale_initial,
|
||||
noise_scale_delta=noise_scale_delta,
|
||||
**hps.model,
|
||||
).cuda(rank)
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||
optim_g = torch.optim.AdamW(
|
||||
filter(lambda p: p.requires_grad, net_g.parameters()),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
optim_d = torch.optim.AdamW(
|
||||
net_d.parameters(),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
if net_dur_disc is not None:
|
||||
optim_dur_disc = torch.optim.AdamW(
|
||||
net_dur_disc.parameters(),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
else:
|
||||
optim_dur_disc = None
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
pretrain_G, pretrain_D, pretrain_dur = load_pretrain_model()
|
||||
hps.pretrain_G = hps.pretrain_G or pretrain_G
|
||||
hps.pretrain_D = hps.pretrain_D or pretrain_D
|
||||
hps.pretrain_dur = hps.pretrain_dur or pretrain_dur
|
||||
|
||||
if hps.pretrain_G:
|
||||
utils.load_checkpoint(
|
||||
hps.pretrain_G,
|
||||
net_g,
|
||||
None,
|
||||
skip_optimizer=True
|
||||
)
|
||||
if hps.pretrain_D:
|
||||
utils.load_checkpoint(
|
||||
hps.pretrain_D,
|
||||
net_d,
|
||||
None,
|
||||
skip_optimizer=True
|
||||
)
|
||||
|
||||
|
||||
if net_dur_disc is not None:
|
||||
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
||||
if hps.pretrain_dur:
|
||||
utils.load_checkpoint(
|
||||
hps.pretrain_dur,
|
||||
net_dur_disc,
|
||||
None,
|
||||
skip_optimizer=True
|
||||
)
|
||||
|
||||
try:
|
||||
if net_dur_disc is not None:
|
||||
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
||||
net_dur_disc,
|
||||
optim_dur_disc,
|
||||
skip_optimizer=hps.train.skip_optimizer
|
||||
if "skip_optimizer" in hps.train
|
||||
else True,
|
||||
)
|
||||
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
skip_optimizer=hps.train.skip_optimizer
|
||||
if "skip_optimizer" in hps.train
|
||||
else True,
|
||||
)
|
||||
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
||||
net_d,
|
||||
optim_d,
|
||||
skip_optimizer=hps.train.skip_optimizer
|
||||
if "skip_optimizer" in hps.train
|
||||
else True,
|
||||
)
|
||||
if not optim_g.param_groups[0].get("initial_lr"):
|
||||
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
||||
if not optim_d.param_groups[0].get("initial_lr"):
|
||||
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
||||
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
||||
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
||||
|
||||
epoch_str = max(epoch_str, 1)
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
||||
)
|
||||
if net_dur_disc is not None:
|
||||
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
||||
)
|
||||
else:
|
||||
scheduler_dur_disc = None
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
try:
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d, net_dur_disc],
|
||||
[optim_g, optim_d, optim_dur_disc],
|
||||
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
||||
scaler,
|
||||
[train_loader, eval_loader],
|
||||
logger,
|
||||
[writer, writer_eval],
|
||||
)
|
||||
else:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d, net_dur_disc],
|
||||
[optim_g, optim_d, optim_dur_disc],
|
||||
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
torch.cuda.empty_cache()
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
if net_dur_disc is not None:
|
||||
scheduler_dur_disc.step()
|
||||
|
||||
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||
):
|
||||
net_g, net_d, net_dur_disc = nets
|
||||
optim_g, optim_d, optim_dur_disc = optims
|
||||
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
||||
train_loader, eval_loader = loaders
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
net_d.train()
|
||||
if net_dur_disc is not None:
|
||||
net_dur_disc.train()
|
||||
for batch_idx, (
|
||||
x,
|
||||
x_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
y,
|
||||
y_lengths,
|
||||
speakers,
|
||||
tone,
|
||||
language,
|
||||
bert,
|
||||
ja_bert,
|
||||
) in enumerate(tqdm(train_loader)):
|
||||
if net_g.module.use_noise_scaled_mas:
|
||||
current_mas_noise_scale = (
|
||||
net_g.module.mas_noise_scale_initial
|
||||
- net_g.module.noise_scale_delta * global_step
|
||||
)
|
||||
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
||||
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
speakers = speakers.cuda(rank, non_blocking=True)
|
||||
tone = tone.cuda(rank, non_blocking=True)
|
||||
language = language.cuda(rank, non_blocking=True)
|
||||
bert = bert.cuda(rank, non_blocking=True)
|
||||
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
(
|
||||
y_hat,
|
||||
l_length,
|
||||
attn,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
(hidden_x, logw, logw_),
|
||||
) = net_g(
|
||||
x,
|
||||
x_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
speakers,
|
||||
tone,
|
||||
language,
|
||||
bert,
|
||||
ja_bert,
|
||||
)
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
y_mel = commons.slice_segments(
|
||||
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
||||
)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
|
||||
y = commons.slice_segments(
|
||||
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
||||
) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
||||
y_d_hat_r, y_d_hat_g
|
||||
)
|
||||
loss_disc_all = loss_disc
|
||||
if net_dur_disc is not None:
|
||||
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
||||
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
||||
)
|
||||
with autocast(enabled=False):
|
||||
# TODO: I think need to mean using the mask, but for now, just mean all
|
||||
(
|
||||
loss_dur_disc,
|
||||
losses_dur_disc_r,
|
||||
losses_dur_disc_g,
|
||||
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
||||
loss_dur_disc_all = loss_dur_disc
|
||||
optim_dur_disc.zero_grad()
|
||||
scaler.scale(loss_dur_disc_all).backward()
|
||||
scaler.unscale_(optim_dur_disc)
|
||||
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
||||
scaler.step(optim_dur_disc)
|
||||
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc_all).backward()
|
||||
scaler.unscale_(optim_d)
|
||||
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
||||
scaler.step(optim_d)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
# Generator
|
||||
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
||||
if net_dur_disc is not None:
|
||||
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
||||
with autocast(enabled=False):
|
||||
loss_dur = torch.sum(l_length.float())
|
||||
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||
|
||||
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
||||
if net_dur_disc is not None:
|
||||
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
||||
loss_gen_all += loss_dur_gen
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]["lr"]
|
||||
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
||||
logger.info(
|
||||
"Train Epoch: {} [{:.0f}%]".format(
|
||||
epoch, 100.0 * batch_idx / len(train_loader)
|
||||
)
|
||||
)
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {
|
||||
"loss/g/total": loss_gen_all,
|
||||
"loss/d/total": loss_disc_all,
|
||||
"learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d,
|
||||
"grad_norm_g": grad_norm_g,
|
||||
}
|
||||
scalar_dict.update(
|
||||
{
|
||||
"loss/g/fm": loss_fm,
|
||||
"loss/g/mel": loss_mel,
|
||||
"loss/g/dur": loss_dur,
|
||||
"loss/g/kl": loss_kl,
|
||||
}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
||||
)
|
||||
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/attn": utils.plot_alignment_to_numpy(
|
||||
attn[0, 0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
|
||||
if global_step % hps.train.eval_interval == 0:
|
||||
evaluate(hps, net_g, eval_loader, writer_eval)
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
||||
)
|
||||
if net_dur_disc is not None:
|
||||
utils.save_checkpoint(
|
||||
net_dur_disc,
|
||||
optim_dur_disc,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
||||
)
|
||||
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
||||
if keep_ckpts > 0:
|
||||
utils.clean_checkpoints(
|
||||
path_to_models=hps.model_dir,
|
||||
n_ckpts_to_keep=keep_ckpts,
|
||||
sort_by_time=True,
|
||||
)
|
||||
|
||||
global_step += 1
|
||||
|
||||
if rank == 0:
|
||||
logger.info("====> Epoch: {}".format(epoch))
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
generator.eval()
|
||||
image_dict = {}
|
||||
audio_dict = {}
|
||||
print("Evaluating ...")
|
||||
with torch.no_grad():
|
||||
for batch_idx, (
|
||||
x,
|
||||
x_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
y,
|
||||
y_lengths,
|
||||
speakers,
|
||||
tone,
|
||||
language,
|
||||
bert,
|
||||
ja_bert,
|
||||
) in enumerate(eval_loader):
|
||||
x, x_lengths = x.cuda(), x_lengths.cuda()
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
speakers = speakers.cuda()
|
||||
bert = bert.cuda()
|
||||
ja_bert = ja_bert.cuda()
|
||||
tone = tone.cuda()
|
||||
language = language.cuda()
|
||||
for use_sdp in [True, False]:
|
||||
y_hat, attn, mask, *_ = generator.module.infer(
|
||||
x,
|
||||
x_lengths,
|
||||
speakers,
|
||||
tone,
|
||||
language,
|
||||
bert,
|
||||
ja_bert,
|
||||
y=spec,
|
||||
max_len=1000,
|
||||
sdp_ratio=0.0 if not use_sdp else 1.0,
|
||||
)
|
||||
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1).float(),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
image_dict.update(
|
||||
{
|
||||
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].cpu().numpy()
|
||||
)
|
||||
}
|
||||
)
|
||||
audio_dict.update(
|
||||
{
|
||||
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
||||
0, :, : y_hat_lengths[0]
|
||||
]
|
||||
}
|
||||
)
|
||||
image_dict.update(
|
||||
{
|
||||
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].cpu().numpy()
|
||||
)
|
||||
}
|
||||
)
|
||||
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
||||
|
||||
utils.summarize(
|
||||
writer=writer_eval,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
audios=audio_dict,
|
||||
audio_sampling_rate=hps.data.sampling_rate,
|
||||
)
|
||||
generator.train()
|
||||
print('Evauate done')
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
Reference in New Issue
Block a user